二次剩余定理 模板

某些坑已经挖好…随时回来填补

勒让德符号:https://www.bk.gugeso.site/wiki/%E5%8B%92%E8%AE%A9%E5%BE%B7%E7%AC%A6%E5%8F%B7

关于雅可比符号的介绍较少,大致意思就是,当p不为质数的时候,我们需要根据唯一分解定理把p分解成数个质数相乘,分别计算答案 

接下来  参考了这位大佬的博客  (基本全抄)  https://blog.csdn.net/codeswarrior/article/details/81626573

下面是模板代码 模板根据此题所写:https://blog.csdn.net/codeswarrior/article/details/81626573   (还是抄的)

题目大概意思:求 J(a,n) ,即告诉你a,n,问你x²=a(mod n)是否有解

当模数不是质数的时候,推广勒让德定理,即雅可比定理

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6+10;//记得根据题目要求改 
bool isprime[maxn];
int prime[maxn],tot;
void init(){//素数筛
    tot = 0;
    memset(isprime,true,sizeof(isprime));
    isprime[0] = isprime[1] = false;
    for(int i = 2; i < maxn; i++){
        if(isprime[i]){
            prime[tot++] = i;
            for(int j = i + i; j < maxn; j += i){
                isprime[j] = false;
            }
        }
    }
}

int q_pow(int a,int n,int m){//快速幂取模 
    ll ans = 1;
    ll x = a;
    while(n){
        if(n & 1)
            ans = ans * x % m;
        x = x * x % m;
        n >>= 1;
    }
    return ans % m;
}

int solve(int a,int p){//二次剩余的定理 
    if(a % p == 0) return 0;
    return q_pow(a,(p-1)/2,p) == 1 ? 1 : -1;
}
int main(){
    int a,n;
    init();
    while(~scanf("%d%d",&a,&n)){//x² = a (mod n)
        int ans = 1;
        if(!isprime[n]){//雅可比定理相关计算
            for(int i = 0; i < tot && prime[i] <= n; i++){//唯一分解定理
                if(n % prime[i]) continue;
                int cnt = 0;
                while(n % prime[i] == 0){
                    cnt++;
                    n /= prime[i];
                }
                int t = solve(a,prime[i]);
                if(t == -1 && cnt % 2 == 0) t = 1;//注意个数如果是-1并且偶数个相乘那就成1了
                ans *= t;
            }
        }
        else{
            ans = solve(a,n);//如果n为质数,直接套用勒让德定理即可
        }
        printf("%d\n",ans);
    }
    return 0;
}

至于要对x进行求解,继续搬运大佬博客  https://blog.csdn.net/a_crazy_czy/article/details/51959546

板子很简单,并没有无法理解的代码上的问题,只要理解大佬博客中的数学证明,就很好写

板子如下:

#include <bits/stdc++.h>
 
using namespace std;
typedef long long LL;
const int p = 1e9+7;
LL w,b,c;
struct Inumber{                    //表示复数a+bi (i=sqrt(w))
    LL a,b;
};
inline Inumber operator*(Inumber x,Inumber y){   //复数乘法
    return (Inumber){(x.a*y.a+x.b*y.b%p*w)%p,(x.a*y.b+x.b*y.a)%p};
}
LL qpow(LL a,LL x,LL mod){
    LL res = 1;
    while(x){
        if(x&1) res = res*a%mod;
        a = a*a%mod;
        x >>= 1;
    }
    return res;
}
Inumber iqpow(Inumber A,LL x){        //复数快速幂
    Inumber res = (Inumber){1,0};
    while(x){
        if(x&1) res = res*A;
        A = A*A;
        x >>= 1;
    }
    return res;
}
int Legendre(LL a,LL p){
    if(qpow(a,(p-1)>>1,p)==1) return 1;
    else return -1;
}
LL solve(LL n,LL mod){               //求解x^2 = n (mod p)
    LL a;
    if(n == 0) return 0;
    if(Legendre(n,mod) == -1) return -1;
    while(true){
        a = rand()%mod;
        w = (a*a%mod-n+mod)%mod;
        if(Legendre(w,mod) == -1) break;
    }
    Inumber ans = iqpow((Inumber){a,1},(p+1)>>1);
    return ans.a%mod;
}
int main(){
    srand(time(0));
	//以下内容均根据题目要求改动
	//solve(n,p) 并对其结果 +p mod p 即可求出 x*x=n(mod p)的最小正整数解  
    //这里p只能是奇素数 
	int t; cin >> t;
    LL inv2 = qpow(2,p-2,p);
    while(t--){
        cin >> b >> c;
        LL x = solve(((b*b-4*c)%p+p)%p,p);
        if(x == -1) puts("-1 -1");
        else{
            LL ansx = ((b-x)%p+p)%p*inv2%p;
            LL ansy = (b+x)%p*inv2%p;
            cout << min(ansx,ansy) << " " << max(ansx,ansy) << '\n';
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值