一、代数基础
1.群
一种运算满足:结合律,单位元,逆元。
if 可交换=>Abel群
if G=<a>=>循环群
模n剩余类群: (以1为生成元的加群)
Def:元素的阶
使得的最小的整数k,记作ord(a).
Th:拉格朗日定理
G为有限群,H为G的子群,,其中
为H在G中的指数,等于H的陪集的个数。
Th:(元素的阶)
(1)G=<a>是一个m阶循环群,则生成一个阶为
的子群。
(2)设G=<a>是m阶循环群,f|m,则G中有个阶为f 的元素,其中
为欧拉函数。
(3)设G=<a>是m阶循环群,G恰有个生成元。
2.环
两种计算:加法交换群,乘法结合律,乘法分配律。
有乘法单位元=>有单位元的环
乘法可交换=>交换环
可交换,有单位元,无零因子=>整环
环中非零元在乘法下构成群,乘法单位元,逆元=>除环
交换的除环=>域
Def:p阶伽罗瓦域
Def:环的特征
最小的正整数n,使得forall r in R, nr=0,记char(R)=n
Th:
设环,char(R)>0,有单位元,无零因子=>特征必为素数
pf:与无零因子矛盾
Cor:有限域的特征必为素数
Th:
交换环R,char(R)=p,p为素数
.
3.多项式
Th: 对于, 剩余类环
是域 等价于 f 是不可约的在F上。