动态规划notebook

63. 不同路径 II

在这里插入图片描述

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> map(m, vector<int>(n, 0));

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i)
            map[i][0] = 1;
        
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) 
            map[0][j] = 1;

        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if (obstacleGrid[i][j] == 1) continue;

                map[i][j] = map[i - 1][j] + map[i][j - 1];
            }
        }
        return map[m - 1][n - 1];
    }
};

在这里插入图片描述

小结

  • 遇到障碍dp[i][j]保持0就可以了

343. 整数拆分

在这里插入图片描述

class Solution {
public:
    int integerBreak(int n) {
        // f(n) = max{f(n), max{f(n-j)*j, (n-j)*j}}
        vector<int> f(n+1);
        f[2] = 1;
        for (int i = 3; i < n + 1; ++i) {
            for (int j = 1; j < i; ++j) {
                f[i] = max(f[i], max(f[i - j] * j, (i - j) * j));
            }
        }
        return f[n];
    }
};

在这里插入图片描述

小结

  • 递推公式:f(n) = max{f(n), max{f(n-j)*j, (n-j)*j}}

139. 单词拆分

在这里插入图片描述

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        // 将单词字典转换成无序的集合
        unordered_set<string> wordset(wordDict.begin(), wordDict.end());
        // 初始化背包
        vector<bool> dp(s.size()+1, false);
        dp[0] = true;
        // 遍历顺序背包在外,物品在内
        for (int i = 1; i <= s.size(); ++i){
            for (int j = 0; j < i; ++j) {
                string word = s.substr(j, i - j);
                if (wordset.find(word) != wordset.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
    return dp[s.size()]; 
    }

};

在这里插入图片描述

小结

-分割子串的特殊性,遍历背包放在外循环,将遍历物品放在内循环更方便一些

213. 打家劫舍 II

在这里插入图片描述

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2);
        int result2 = robRange(nums, 1, nums.size() - 1);
        return max(result1, result2);
    }
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; ++i) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];

    }
};

在这里插入图片描述

337. 打家劫舍 III

在这里插入图片描述

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        // 0:不偷, 1:偷
        return max(result[0], result[1]);
    }
    vector<int> robTree(TreeNode* root) {
        if (root == NULL) return {0, 0};
        // 后序遍历
        vector<int> left = robTree(root->left);
        vector<int> right = robTree(root->right);
        
        // 如果不偷cur
        int result0 = max(left[0], left[1]) + max(right[0], right[1]);
        // 如果偷cur
        int result1 = root->val + left[0] + right[0];
        return {result0, result1};
    }
};

在这里插入图片描述

小结

  • 后序遍历

122. 买卖股票的最佳时机 II

在这里插入图片描述

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // dp[i][0] 持有
        // dp[i][1] 不持有
        // dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
        // dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        // 滚动数组
        vector<vector<int>> dp(2, vector<int>(2));
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < prices.size(); ++i) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0],dp[(i - 1) % 2][1] - prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);
        }
    return max(dp[1][1], dp[0][1]);
    }
};

在这里插入图片描述

123. 买卖股票的最佳时机 III

在这里插入图片描述

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // 0: 第一天买入/持有
        // 1: 第一天卖出/不持有
        // 2: 第二天买入/持有
        // 3: 第二天卖出/不持有
        // dp[i][0] = max(dp[i - 1][0], -prices[i])
        // dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]+prices[i])
        // dp[i][2] = max(dp[i - 1][2], dp[i - 1][1]-prices[i])
        // dp[i][3] = max(dp[i - 1][3], dp[i - 1][2]+prices[i])
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(4));
        dp[0][0] = -prices[0];
        dp[0][2] = -prices[0];
        for (int i = 1; i < prices.size(); ++i) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);
        }
        return dp[prices.size() - 1][3];

    }
};

在这里插入图片描述

300. 最长递增子序列

在这里插入图片描述

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        // 没考虑 nums.size() 为0 、1 的情况。。。。
        if (nums.size() <= 1) return nums.size();

        // 问题,忘了要和前面所有的比了。。。。
        // dp[i] 最长递增子序列
        // dp[i] = max(dp[i], dp[j] + 1)
        // 初始化为1
        // 从前往后
        vector<int> dp(nums.size(), 1);
        int res = 0;
        for (int i = 1; i < nums.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            if (dp[i] > res) {
                res = dp[i];
            } 
        }
        return res;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值