编写fisher线性判别函数,实现Iris Data Set的数据分类

本文介绍了如何利用Fisher线性判别函数对Iris Data Set进行数据分类。在实验环境中,作者使用Pycharm、Win10和Python 3.7.0。实验过程中解决了安装问题,并提供了通过scikit-learn库导入数据的代码片段。文章还分享了实验结果的截图,并邀请读者访问作者的博客获取完整内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Iris Data Set(鸢尾属植物数据集)是历史较为久远的数据集,它首次出现在著名的英国统计学家和生物学家Ronald Fisher 1936年的论文《The use of multiple measurements in taxonomic problems》中,被用来介绍线性判别式分析。在这个数据集中,包括了三类不同的鸢尾属植物:Iris Setosa,Iris Versicolour,Iris Virginica。每类收集了50个样本,因此这个数据集一共包含了150个样本。

实验要求

编写fisher线性判别函数,实现Iris Data Set(鸢尾属植物数据集,数据下载地址 )的数据分类,上传源码和实现结果,语言不限。

实验环境

  • Pycharm 2019.3 EAP
  • Win10 1909
  • Python 3.7.0

环境搭建中遇到的问题及解决方案

1.安装时报Non-zero exit code (1)

解决方法:因为pip版本太低。
cmd下执行下面命令:

python -m pip install -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值