LeetCode53.最大子数组和

本文介绍了如何使用动态规划方法求解给定整数数组中具有最大和的连续子数组问题,通过维护当前连续子数组和和全局最大和,确保在遇到负数时能及时调整子数组起点,最后返回最大和6。
摘要由CSDN通过智能技术生成

题目

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6

思路

求解最大子数组和可以使用动态规划的思路解决(线性DP)

  • 定义两个变量:maxn 用于记录最大和,初始化为一个较小的负数,vis 用于记录当前的连续子数组和,初始化为数组的第一个元素 nums[0]。
    将 maxn 初始化为 vis 的原因是确保即使数组中所有元素都为负数,返回结果也不会是一个非常小的负数。
  • 在循环中,首先将 vis 和 0 比较取较大值。这是因为如果当前 vis 为负数,那么加上 nums[i] 可能会使得和更小,因此选择从 0 开始重新计算连续子数组和。
  • 然后,将 vis 加上当前元素 nums[i],表示将当前元素加入连续子数组中。
  • 更新 maxn,将其与当前的 vis 进行比较,取较大值作为新的最大和。
  • 返回 maxn,即为最终的最大和。

Code

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int maxn = -1000000;
        int vis = nums[0];
        maxn = max(maxn , vis);
        for (int i=1 ;i<nums.size();i++)
        {
            vis = max(0 , vis);
            vis += nums[i];
            maxn = max(maxn , vis);
        }
        return maxn;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值