find the mincost route


 find the mincost route

Crawling in process... Crawling failed      Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u  

    

Description

杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须满足K>2,就是说至除了出发点以外至少要经过2个其他不同的景区,而且不能重复经过同一个景区。现在8600需要你帮他找一条这样的路线,并且花费越少越好。
 

Input

第一行是2个整数N和M(N <= 100, M <= 1000),代表景区的个数和道路的条数。
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。
 

Output

对于每个测试实例,如果能找到这样一条路线的话,输出花费的最小值。如果找不到的话,输出"It's impossible.".
 

Sample Input

     
     
3 3 1 2 1 2 3 1 1 3 1 3 3 1 2 1 1 2 3 2 3 1
 

Sample Output

     
     
3 It's impossible.


对于i到j的最短路径有两种形式,①经过k,最短路径就是i到k加上k到j的距离;②不过k,最短路径就是i 到j的距离。

求无向图最小环,枚举最大环的连接点,更新环,用dist[i][j]表示i到j的最短路径,当前最小环的权用minn表示,则对于每一个接点k (1到k - 1中间结点的最短路径都已经确定), 有minn = ( dist[i][j] + maze[j][k] + maze[k][i] , minn ),即环的权 = i到j的最短路径(1 < i,j <= k - 1) + jk边 + ki边。


代码:

#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"

using namespace std;

#define INF 100000000

int n,m;
int maze[105][105];
int dist[105][105];

void initial()
{
    for(int i = 0;i < 105;i++)
    {
        for(int j = 0;j < 105;j++)
        {
            maze[i][j] = INF;
            dist[i][j] = INF;
        }
    }
}

void Floyd()
{
    int minn = INF;
    for(int k = 1;k <= n;k++)  //对于每一个k值,1到k - 1中间结点的最短路径都已经确定
    {
        for(int i = 1;i < k;i++)
        {
            for(int j = i + 1;j < k;j++)
            {
                minn = min(dist[i][j] + maze[j][k] + maze[k][i],minn); //更新环的权值
            }
        }
        for(int i = 1;i <= n;i++)
        {
            for(int j = 1;j <= n;j++)
            {
                dist[i][j] = min(dist[i][j],dist[i][k] + dist[k][j]); //保存i到j之间最短路径
            }
        }
    }
    if(minn == INF)
    {
        printf("It's impossible.\n");
    }
    else
    {
        printf("%d\n",minn);
    }
}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        initial();
        int a,b,c;
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            if(a != b && maze[a][b] > c)
            {
                maze[a][b] = c;
                maze[b][a] = c;
                dist[a][b] = c;
                dist[b][a] = c;
            }
        }
        Floyd();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值