描述
Flappy Bird 是一款风靡一时的休闲手机游戏。玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。
为了简化问题,我们对游戏规则进行了简化和改编:
1.游戏界面是一个长为n ,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度)。
.2小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
3.小鸟每个单位时间沿横坐标方向右移的距离为1 ,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度X ,每个单位时间可以点击多次,效果叠加; 4.如果不点击屏幕,小鸟就会下降一定高度Y 。小鸟位于横坐标方向不同位置时,上升的高度X 和下降的高度Y 可能互不相同。
小鸟高度等于0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。 现在,请你判断是否可以完成游戏。如果可以 ,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙
20170609090813_44012
输入
第1 行有3 个整数n ,m ,k ,分别表示游戏界面的长度,高度和水管的数量,每两个
整数之间用一个空格隔开;
接下来的n 行,每行2 个用一个空格隔开的整数X 和Y ,依次表示在横坐标位置0 ~n- 1
上玩家点击屏幕后,小鸟在下一位置上升的高度X ,以及在这个位置上玩家不点击屏幕时,
小鸟在下一位置下降的高度Y 。
接下来k 行,每行3 个整数P ,L ,H ,每两个整数之间用一个空格隔开。每行表示一
个管道,其中P 表示管道的横坐标,L 表示此管道缝隙的下边沿高度为L ,H 表示管道缝隙
上边沿的高度(输入数据保证P 各不相同,但不保证按照大小顺序给出)。
输出
第一行,包含一个整数,如果可以成功完成游戏,则输出1 ,否则输出0 。
第二行,包含一个整数,如果第一行为1 ,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。
题解:这道题让蒟蒻很头疼。
当时想出了状态。但就是推不出方程md
后来看了题解
上升其实就是一个完全背包问题而背包容量就是当前小鸟飞到的高度。
这样一想,下降也很好解决了。
在一个单位时间里,小鸟最多只能下降一次。
那么,对应的背包问题就是01背包问题。
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int w=1,data=0;char ch;
ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') data=data*10+ch-'0',ch=getchar();
return data*w;
}
const int N=11000;
const int inf=0x3f3f3f3f;
int n,m,k;
int h[N],low[N],x[N],y[N],fl[N];
int dp[N][2010];
signed main(){
int flag=0;
n=read();m=read();k=read();
for(int i=1;i<=n;i++){x[i]=read();y[i]=read();}
for(int i=1;i<=n;i++) h[i]=m,low[i]=1;
for(int i=1;i<=k;i++){
int p1=read(),l1=read(),h1=read();
fl[p1]=1;
h[p1]=h1-1;low[p1]=l1+1;
}
memset(dp,0x3f3f3f3f,sizeof(dp));
for(int i=1;i<=m;i++) dp[0][i]=0;
for(int i=1;i<=n;i++){
for(int j=x[i]+1;j<=m+x[i];j++){
dp[i][j]=min(dp[i][j],dp[i-1][j-x[i]]+1);
dp[i][j]=min(dp[i][j],dp[i][j-x[i]]+1);
}
for(int j=m+1;j<=m+x[i];j++){dp[i][m]=min(dp[i][m],dp[i][j]);}
for(int j=1;j<=m-y[i];j++){
dp[i][j]=min(dp[i-1][j+y[i]],dp[i][j]);
}
for(int j=h[i]+1;j<=m;j++) dp[i][j]=inf;
for(int j=1;j<low[i];j++) dp[i][j]=inf;
}
int ans=inf;
for(int i=1;i<=m;i++) {
ans=min(ans,dp[n][i]);
}
if(ans<inf){
puts("1");
printf("%ld",ans);return 0;
}
int i,j;
for(i=n;i>=1;i--){
for(j=1;j<=m;j++){
if(dp[i][j]<inf){
break;
}
}
if(j<=m) break;
}
ans=0;
for(int k=1;k<=i;k++){
if(fl[k]) ans++;
}
puts("0");
printf("%d",ans);
return 0;
}