http://acm.fzu.edu.cn/problem.php?pid=1022
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
一棵二叉树可以按照如下规则表示成一个由0、1、2组成的字符序列,我们称之为“二叉树序列S”:
例如,下图所表示的二叉树可以用二叉树序列S=21200110来表示。
你的任务是要对一棵二叉树的节点进行染色。每个节点可以被染成红色、绿色或蓝色。并且,一个节点与其子节点的颜色必须不同,如果该节点有两个子节点,那么这两个子节点的颜色也必须不相同。给定一棵二叉树的二叉树序列,请求出这棵树中最多和最少有多少个点能够被染成绿色。
Input
输入数据由多组数据组成。
每组数据仅有一行,不超过10000个字符,表示一个二叉树序列。
Output
对于每组输入数据,输出仅一行包含两个整数,依次表示最多和最少有多少个点能够被染成绿色。
Sample Input
1122002010
Sample Output
5 2
思路
递归建树+树形dp
dp[i][1]表示i为绿色时,以i为根节点的子树染绿色的最值;
dp[i][0]表示i不为绿色时,以i为根节点的子树染绿色的最值。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX_N = 10000;
static int cnt, dp[MAX_N + 10][2];
char S[MAX_N + 10];
struct Tree
{
int data;
Tree *left, *right;
};
void Create(Tree *&T)
{
cnt++;
T = new Tree;
T->data = cnt;
if (S[cnt] == '0')
T->left = T->right = NULL;
else if (S[cnt] == '1')
Create(T->left), T->right = NULL;
else
Create(T->left), Create(T->right);
}
void f(Tree *T, bool flag)
{
if (T == NULL)
return;
f(T->left, flag);
f(T->right, flag);
if (T->left != NULL && T->right != NULL)
{
dp[T->data][1] = dp[T->left->data][0] + dp[T->right->data][0] + 1;
if (flag)
dp[T->data][0] = max(dp[T->left->data][0] + dp[T->right->data][1], dp[T->left->data][1] + dp[T->right->data][0]);
else
dp[T->data][0] = min(dp[T->left->data][0] + dp[T->right->data][1], dp[T->left->data][1] + dp[T->right->data][0]);
}
else if (T->left == NULL && T->right != NULL)
{
dp[T->data][1] = dp[T->right->data][0] + 1;
if (flag)
dp[T->data][0] = max(dp[T->right->data][1], dp[T->right->data][0]);
else
dp[T->data][0] = min(dp[T->right->data][1], dp[T->right->data][0]);
}
else if (T->left != NULL && T->right == NULL)
{
dp[T->data][1] = dp[T->left->data][0] + 1;
if (flag)
dp[T->data][0] = max(dp[T->left->data][0], dp[T->left->data][1]);
else
dp[T->data][0] = min(dp[T->left->data][0], dp[T->left->data][1]);
}
else
{
dp[T->data][1] = 1;
dp[T->data][0] = 0;
}
}
int main()
{
while (~scanf("%s", S))
{
cnt = -1;
Tree *T;
Create(T);
memset(dp, 0, sizeof dp);
f(T, true);
printf("%d ", max(dp[T->data][0], dp[T->data][1]));
memset(dp, 0, sizeof dp);
f(T, false);
printf("%d\n", min(dp[T->data][0], dp[T->data][1]));
}
}