经验心得
机器学习在后期如果数据集攀大以后是,它的性能是有瓶颈的,相反在蓝队实战中,每天攻击流量都有一秒10到40gb流量,所以我们后期优先考虑深度学习以及各种神经网络,除了客户指定机器学习,后面所有demo案例本人都是优先使用深度学习来做,咱们再复习一下机器学习和深度学习区别,机器学习主要有一下这写特点,特征工程我们需要手动处理,最后使用特定算法来进行训练,某些特定模型数据集一大训练很卡,相反深度学习我不需要做过多的特征处理,对于攀大数据集,我们使用gpu无压力。温馨提示本人所有写的这类蓝队大小模型检测方式,除了可以用到流量检测其他检测也是可行,咱们换汤不换药,同样道理把pe,elf,apk,内存马,各种web马样本,固件bin文件提取并进行检测(二进制,固件提取,逆向入门的这些知识网上自行了解),各位小伙伴发挥自己的天马行空的想象力,就像红队队员一样不要局限在某一种检测方式下面哦。下个版本用客户需求再写一个?朴素贝叶斯也试试把它分类?还是其他呢?部分功能模块,本人我删除不再添加,因为要考虑一些客户买家经济问题,好多中介,模仿者做的很不错,我就保留一些功能降低价格,本来想走攻壳机动队和赛博朋克未来科技那种风格,除了一些大厂,国外的客户来问,剩下其他中介个人很少,删除的一些酷炫功能如果需要可以加,如在线训练模型,调参,在线实时监控,高并发处理,可视化3d模型交互有点类似bim(看过生化危机的朋友们是否还记得电影中电脑上透明蓝色建筑很酷,有点类似那种,我们可以做出建筑中机房3d可视化效果,实时监控机房温度,以及流量大小,以及iot设备配合完成,还有防火墙拦截那些信息,很多好玩的就不说了),大屏监控交互,管道技术,多节点等就不添加了,我后期会在不同demo中分别展示部分酷炫的功能以及技术栈,从软件到硬件,再到底层驱动的开发。