问题描述
小蓝发现, 对于一个正整数 n和一个小于 n 的正整数 v, 将 v平方后对 n 取余可能小于 n 的一半, 也可能大于等于 n 的一半。
请问, 在 1 到 n-1中, 有多少个数平方后除以 n的余数小于 n 的一半。
例如, 当 n=4时, 1,2,3的平方除以 4 的余数都小于 4 的一半。
又如, 当 n=5 时, 1,4的平方除以 5 的余数都是 1, 小于 5 的一半。而 2,3 的平方除以 5 的余数都是 4 , 大于等于 5 的一半。
输入格式
输入一行包含一个整数 n 。
输出格式
输出一个整数, 表示满足条件的数的数量。
样例输入
5
样例输出
2
评测用例规模与约定
对于所有评测用例, 1≤n≤10000 。
运行限制
最大运行时间:1s
最大运行内存: 256M
总通过次数: 110 | 总提交次数: 154
难度: 简单 标签: 2021, 省赛, 2022
思路
核心思路就一句话 ”在 1 到 n-1中, 有多少个数平方后除以 n的余数小于 n 的一半”。按照条件直接写的话不会AC,样例只过了8个。浅浅想了一下感觉直接除2好像有猫腻,比如25/2=12 与余数12相比就是等于了,应该是12<12.5。想办法显示小数点,然后加了个除2.0 样例全部通过。
代码
#include <iostream>
using namespace std;
int main() {
int n;
int v = 0;
cin >> n;
for (int i = 1; i < n; i++) {
if ((i * i) % n < double(n / 2.0)) {
v++;
}
}
cout << v;
return 0;
}