AcWing 154. 滑动窗口

给定一个大小为n≤106n≤106的数组。

有一个大小为k的滑动窗口,它从数组的最左边移动到最右边。

您只能在窗口中看到k个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为[1 3 -1 -3 5 3 6 7],k为3。

窗口位置最小值最大值
[1 3 -1] -3 5 3 6 7-13
1 [3 -1 -3] 5 3 6 7-33
1 3 [-1 -3 5] 3 6 7-35
1 3 -1 [-3 5 3] 6 7-35
1 3 -1 -3 [5 3 6] 736
1 3 -1 -3 5 [3 6 7]37

您的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式

输入包含两行。

第一行包含两个整数n和k,分别代表数组长度和滑动窗口的长度。

第二行有n个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例:

8 3
1 3 -1 -3 5 3 6 7

输出样例:

-1 -3 -3 -3 3 3
3 3 5 5 6 7

思想:

1、暴力解法

外层循环整个数组,内层循环当前节点下前k个下标,找到最小值输出即可;时间复杂度O(kn)

伪代码:

for(i = 0; i < n;++i){外层循环整个数组

for(j = i - k + 1; j < =i; ++j)内层循环区间【i - k + 1, i]】比较找到最小值

}

2、单调队列优化(单调递增),原则保证队头是最小的依单调递增,每次加入队列前要与队尾比较(小于队尾,则出队),因为队尾是队列中最大的

1 3 -1】 -3】  5】 3】 6】7】

       -1     -3     -3    -3    3    3

观察上图【】表示队列元素

思想:

队空,1 进队列【1】;

3比1小,3进队列【1,3】;

-1比3小,3出队【1】,继续比,我们要保证单调性,-1比1小,1出队【】,队空,当前元素入队【-1】;坐标大于等于k,输出队头-1

-3比-1小,-1出队,队空-3入队【-3】 输出队头-3;

5比-3大,5入队【-3,5】输出队头-3;

3比5小,5出队,3比-3大,3入队【-3,3】输出队头-3

此时-3的坐标是3,6的坐标是6,不再区间[4,6]内,因此队头出队【3】,6与3大,6入队,输出队头3

7比6大,7入队【3,6,7】输出队头3

结果是

-1 -3 -3 -3 3 3

同理最大值也是构造单调队列(单调递减)

import java.io.*;
import java.lang.Integer;

class Main{
    static int N = 1000010;//>10^6
    static int[] q = new int[N], p = new int[N];
    public static void main(String[] args)throws Exception{
        BufferedReader buf = new BufferedReader(new InputStreamReader(System.in));
        BufferedWriter buw = new BufferedWriter(new OutputStreamWriter(System.out));
        String[] params = buf.readLine().split(" ");
        int n = Integer.valueOf(params[0]);
        int k = Integer.valueOf(params[1]);
        String[] nums = buf.readLine().split(" ");
        int hh = 0, tt = -1;
        for(int i = 0; i < n; ++i){
            p[i] = Integer.valueOf(nums[i]);
        }
        for(int i = 0; i < n; ++i){
            if(hh <= tt && i - k + 1 > q[hh])hh++;//保证滑动窗口的大小为k,i - k + 1计算得到队头下标与队头下标q[hh]比较,如果大于队头则加1
            while(hh <= tt && p[i] < p[q[tt]])tt--;//剔除单调队列前面大的,直到遇到比自己小的
            q[++tt] = i;
            if(hh <= tt && i >= (k - 1))buw.write(p[q[hh]] + " ");
        }
        buw.write("\n");//换行
        buw.flush();
        hh = 0; tt = -1;
        for(int i = 0; i < n; ++i){
            if(hh <= tt && i - k + 1 > q[hh])hh++;//保证滑动窗口的大小为k,大于k则队头后移
            while(hh <= tt && p[i] > p[q[tt]])tt--;//剔除单调队列前面小的,直到遇到比自己大的的
            q[++tt] = i;
            if(hh <= tt && i >= (k - 1))buw.write(p[q[hh]] + " ");
        }
        buw.flush();
        buf.close();
        buw.close();
    }
}

 

单调队列是一种特殊的数据结构,用于解决滑动窗口问题。在滑动窗口问题中,要求在一个大小为k的窗口中,找到窗口内的最大值或最小值。单调队列通过维护一个单调递增或递减的队列,可以高效地解决这个问题。 具体实现上,可以使用两个单调队列一个用于维护窗口内的最大值,另一个用于维护窗口内的最小值。在添加新元素时,如果队列不为空且要加入的元素值小于队列尾的值,则将队尾弹出,直到队尾小于要加入的元素或者队列为空。这样,队首就是当前窗口内的最大值或最小值了。 对于问题中提到的代码,首先定义了一个用于存储下标的队列stk,以及用于存储数组元素的数组a。然后通过一个循环,分别计算了窗口内的最小值和最大值。在计算最小值时,维护了一个单调递增的队列,即队首是窗口内的最小值。在计算最大值时,维护了一个单调递减的队列,即队首是窗口内的最大值。最后,输出计算结果。 总结起来,单调队列是一种解决滑动窗口问题的高效数据结构,可以通过维护单调递增或递减的队列来求解窗口内的最大值或最小值。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span> #### 引用[.reference_title] - *1* [整数滑动窗口acwing算法题C++)](https://blog.csdn.net/falldeep/article/details/118631830)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatgptT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [【Week5作业 D】滑动窗口【单调队列】](https://download.csdn.net/download/weixin_38647039/14916076)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatgptT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* *4* [【acwing】单调队列--154. 滑动窗口](https://blog.csdn.net/qq_43531919/article/details/115402227)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatgptT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值