单调队列——Acwing.154滑动窗口

单调队列

定义

单调队列是一个限制只能队尾插入,但是可以两端删除的双端队列。单调队列存储的元素值,是从队首到队尾单调递增或单调递减的。

运用情况

  1. 滑动窗口最大值:给定一个整数数组和一个窗口大小,计算窗口内的最大值。
  2. 任务调度:按照任务的优先级或其他条件进行调度。
  3. 资源分配:根据资源的需求和可用情况进行分配。
  4. 数据压缩:通过去除重复或冗余数据来压缩数据。

注意事项

  1. 确保队列的单调性:在插入和删除元素时,要保持队列的单调性。
  2. 处理边界情况:特别注意队首和队尾的操作,以及空队列的情况。
  3. 元素的比较和排序:根据具体问题,确定合适的元素比较和排序方式。
  4. 时间复杂度:考虑插入、删除和查询操作的时间复杂度,确保算法的效率。

解题思路

  1. 分析问题:确定问题是否适合使用单调队列,以及需要维护的单调性。
  2. 定义队列:根据问题的要求,选择合适的数据结构来实现单调队列。
  3. 插入和删除元素:按照单调队列的规则,进行元素的插入和删除操作。
  4. 获取结果:根据问题的需求,从单调队列中获取所需的结果,如最大值、最小值或特定位置的元素。
  5. 优化和改进:根据具体情况,考虑对算法进行优化,如使用更高效的数据结构或改进插入和删除的方式。

Acwing.154滑动窗口

题目描述

154. 滑动窗口 - AcWing题库

运行代码

#include<iostream>
using namespace std;
int a[1000010],q[1000010];
int tt=0,hh=1,i,k,n;

void chu ()
{
    tt=0;hh=1;
}

int main ()
{
    
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    for(int i=1;i<=n;i++)
    {
       
        while(hh<=tt&&a[i]<a[q[tt]]) tt--;
    q[++tt]=i;
    if(q[hh]<=i-k) hh++;
    if(i>=k) 
    {printf("%d ",a[q[hh]]);}
    }
    printf("\n");
    chu();
    for(int i=1;i<=n;i++)
    {
        
       while(hh<=tt&&a[i]>a[q[tt]]) tt--;
    q[++tt]=i;
    if(q[hh]<=i-k) hh++;
    if(i>=k) {printf("%d ",a[q[hh]]);}
    }
    
}

代码思路

  1. 变量定义
    • a[1000010]:存储输入的数组。
    • q[1000010]:模拟双端队列,存储数组a中元素的索引。
    • tt 和 hh:分别表示队列的尾部和头部索引。
    • n 和 k:分别表示数组的长度和滑动窗口的大小。
  2. 读取输入
    • 使用scanf读取数组的长度n和滑动窗口的大小k
    • 使用scanf读取数组a的元素。
  3. 处理滑动窗口的最小值
    • 遍历数组a
    • 使用while循环确保队列q中的元素对应的数组值从队头到队尾是递增的(因为要找最小值)。
    • 如果当前元素a[i]小于队尾元素对应的值a[q[tt]],则弹出队尾元素,直到队列为空或找到不小于a[i]的元素。
    • 将当前索引i加入队尾。
    • 如果队头索引对应的元素已经滑出窗口(即q[hh] <= i - k),则弹出队头元素。
    • 如果当前窗口大小达到k,则输出队头元素对应的值,即当前窗口的最小值。
  4. 输出换行符并重置队列
    • 调用chu()函数(虽然这里命名为chu可能不太直观,但实际上是重置队列的索引)。
  5. 处理滑动窗口的最大值
    • 与处理最小值类似,但这次要确保队列中的元素从队头到队尾是递减的(因为要找最大值)。
    • 遍历数组a,并使用类似的逻辑来维护队列和输出最大值。

注意

  • 代码中chu()函数实际上只在处理完最小值后被调用一次,用于重置队列索引,以便接下来处理最大值。
  • 由于q数组实际上被用作双端队列,因此tthh的更新逻辑与双端队列的入队和出队操作类似。
  • 代码中并没有显式地检查输入的有效性(例如,nk的值是否合理,k是否小于等于n等),但在实际应用中应该添加这些检查。
  • 变量命名(如chu)可能不够直观,建议使用更具描述性的名称来提高代码的可读性。

改进思路

创建了两个队列 minQ 和 maxQ 分别用于存储最小值和最大值的索引。同时,我也将处理最小值和最大值的逻辑分别封装在 processMin 和 processMax 函数中。在 main 函数中,我首先用 processMin 函数处理最小值,然后重置队列索引并调用 processMax 函数处理最大值。

注意,我还将队列的最大大小定义为常量 MAXN,这是为了避免在代码中硬编码数字。

改进代码

#include<iostream>  
using namespace std;  
const int MAXN = 1000010;  
int a[MAXN], minQ[MAXN], maxQ[MAXN];  
int minTT = 0, minHH = 1, maxTT = 0, maxHH = 1, n, k;  
// 辅助函数,用于处理滑动窗口的最小值  
void processMin() {  
    for(int i = 1; i <= n; i++) {  
        // 维护最小值队列  
        while(minHH <= minTT && a[i] < a[minQ[minTT]]) minTT--;  
        minQ[++minTT] = i;  
        // 移除窗口最左边的元素  
        if(i - minQ[minHH] + 1 > k) minHH++;  
        // 当窗口大小达到k时,输出结果  
        if(i >= k) printf("%d ", a[minQ[minHH]]);  
    }  
    printf("\n");  
}  
// 辅助函数,用于处理滑动窗口的最大值  
void processMax() {  
    for(int i = 1; i <= n; i++) {  
        // 维护最大值队列  
        while(maxHH <= maxTT && a[i] > a[maxQ[maxTT]]) maxTT--;  
        maxQ[++maxTT] = i;  
        // 移除窗口最左边的元素  
        if(i - maxQ[maxHH] + 1 > k) maxHH++;  
        // 当窗口大小达到k时,输出结果  
        if(i >= k) printf("%d ", a[maxQ[maxHH]]);  
    }  
    printf("\n");  
}  
  
int main() {  
    scanf("%d%d", &n, &k);  
    for(int i = 1; i <= n; i++) {  
        scanf("%d", &a[i]);  
    }  
    // 处理滑动窗口的最小值  
    processMin();  
    // 处理滑动窗口的最大值,重置队列索引  
    minTT = 0, minHH = 1, maxTT = 0, maxHH = 1;  
    processMax();  
    return 0;  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值