AcWing 1012. 友好城市(最长上升子序列)

时间复杂度:

O(n^2);换成单调栈O(nlogn)

算法思想:

对一边排序,另一边求最长上升子序列

//一岸从小到大排序,另一岸求最长上升子序列
import java.util.*;

class Main{
    
    static int n = 0, N = 5010;
    static int[][] nums = new int[N][2];
    static int[] max = new int[N];
    public static void main(String[] args)throws Exception{
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        for(int i = 1; i <= n; ++i){
            nums[i][0] = sc.nextInt();
            nums[i][1] = sc.nextInt();
        }
        Arrays.sort(nums, 1, n + 1, (a, b) -> a[0] - b[0]);
        int res = 0;
        for(int i = 1; i <= n; ++i){
            max[i] = 1;
            for(int j = 1; j <= i; ++j){
                if(nums[i][1] > nums[j][1])
                    max[i] = Math.max(max[i], max[j] + 1);
                res = Math.max(res, max[i]);
            }
        }
        System.out.print(res);
        
    }
}

 

内容概要:本文详细介绍了一个基于MATLAB实现的PCA-RNN融合模型项目,旨在通过主成分分析(PCA)对高维多特征数据进行降维与去噪,提取关键特征后输入循环神经网络(RNN),特别是LSTM结构,进行多特征时序分类预测。项目涵盖了从数据生成、预处理、PCA降维、序列重构、RNN网络构建、训练调优、性能评估到GUI可视化界面开发的完整流程,并提供了详细的代码实现和系统部署方案。该模型在医疗、金融、智能制造、环境监测等多个领域具有广泛应用前景,具备高效降维、捕捉时序依赖、提升预测精度和可解释性强等特点。; 适合人群:具备一定MATLAB编程基础,熟悉机器学习与深度学习基本概念的高校学生、科研人员及从事数据分析、智能预测相关工作的工程师;尤其适合希望掌握多特征时序分类建模与可视化系统开发的技术人员。; 使用场景及目标:①解决高维多特征数据中存在的冗余与噪声问题,实现高效特征压缩;②对具有时间依赖性的复杂序列数据进行精准分类预测;③构建端到端自动化预测系统,支持实时推理与工程化部署;④通过GUI界面降低使用门槛,便于非专业用户操作与结果解读。; 阅读建议:建议读者结合文中提供的完整代码逐模块运行调试,重点关注数据预处理、PCA降维逻辑、RNN时序建模结构设计以及GUI回调函数的实现机制。同时可尝试更换实际业务数据进行迁移应用,并利用超参数调优与交叉验证提升模型稳定性,深入理解整个智能预测系统的构建流程与工程落地要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值