【AcWing算法提高课】1.2.1最长上升子序列(一)

本文回顾最长上升子序列模型,并通过五个不同场景的应用,包括怪盗基德的滑翔翼、登山、合唱队列、友好城市和最长上升子序列和问题,详细解释了动态规划解决这些问题的方法和思路,涉及算法和c++编程实现。
摘要由CSDN通过智能技术生成

题谱

零、回顾最长上升子序列模型

给定一个长度为 N N N 的序列,求数值严格单调递增的长度最长是多少。

闫氏 DP 分析法:

  1. 状态表示: f [ i ] f[i] f[i]
    (1) 集合:所有以 a [ i ] a[i] a[i] 结尾的严格单调递增子序列
    (2) 属性:最大值 Max
  2. 状态计算:划分依据:“最后一个不同的点”
    (1) 倒数第二个数是 a [ 1 ] a[1] a[1]
    (2) 倒数第二个数是 a [ 2 ] a[2] a[2]

    (i-1) 倒数第二个数是 a [ i − 1 ] a[i-1] a[i1],长度为 1 1 1
    (i) 空 (没有倒数第二个数,即以 a [ i ] a[i] a[i] 开头)
    只要分别求出每一类的最大值,最后取一个 Max。

如何计算:看第 k k k 类中的上升子序列,有如下的多种情况:
_ _ _ _ _ _ _ a [ k ]   a [ i ] a[k]\ a[i] a[k] a[i]
而这些子序列的最后一项 a [ i ] a[i] a[i] 都是相同的,因此只需求出以 a [ k ] a[k] a[k] 结尾的最长上升子序列长度 (即 f [ k ] f[k] f[k]),再加上 1 1 1,就得出了结果。

在这里插入图片描述

一、怪盗基德的滑翔翼

1017.怪盗基德的滑翔翼 题目链接

不难发现,当确定完起点 a [ i ] a[i] a[i] 和方向,最长的距离就是以 a [ i ] a[i] a[i] 结尾的最长上升子序列长度 (可以从左至右递增,也可从右至左递增,取决于方向)。因此本问题转化为在两个方向上分别求解 LIS 问题。

代码实现:

#include <cstdio>
#include <algorithm>
using namespace std;

const int N = 110;

int n;
int h[N];
int f[N];

int main(){
   
    int T;
    scanf("%d", &T);

    while (T --)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值