Javase学习4---循环条件语句

1.  Java天条件语句之if

1.1   单if

语法:

 

            注意哦:如果 if 条件成立时的执行语句只有一条,是可以省略大括号滴!但如果执行语句有多条,那么大括号就是不可或缺的;

1.2    if else

语法:

1.3   if   、else if   、else

语法:

 

1.4    if嵌套

语法:

 

1.5      switch循环

语法:

执行过程:当 switch 后表达式的值和 case 语句后的值相同时,从该位置开始向下执行,直到遇到 break 语句或者 switch 语句块结束;如果没有匹配的 case 语句则执行 default 块的代码。

  • 1、 switch 后面小括号中表达式的值必须是byet、int、short、char、string;
  • 2、 case 后面的值可以是常量数值,如 1、2;也可以是一个常量表达式,如 2+2 ;但不能是变量或带有变量的表达式,如 a * 2
  • 3、 case 匹配后,执行匹配块里的程序代码,如果没有遇见 break 会继续执行下一个的 case 块的内容,直到遇到 break 语句或者 switch 语句块结束 如

2.   Java 常用的 3 种循环: while 、 do...while 、 for

2.1  while循环

语法:

 

  • < 1 >、 判断 while 后面的条件是否成立( true / false )
  • < 2 >、 当条件成立时,执行循环内的操作代码 ,然后重复执行< 1 >、< 2 >, 直到循环条件不成立为止

特点:先判断,后执行

2.2    do...while循环

语法:

 

 

  • <1>、 先执行一遍循环操作,然后判断循环条件是否成立
  • <2>、 如果条件成立,继续执行< 1 > 、< 2 >,直到循环条件不成立为止
  • 特点: 先执行,后判断

由此可见,do...while 语句保证循环至少被执行一次

2.3    for循环

语法: 

  • <1>、 执行循环变量初始化部分,设置循环的初始状态,此部分在整个循环中只执行一次
  • <2>、 进行循环条件的判断,如果条件为 true ,则执行循环体内代码;如果为 false ,则直接退出循环
  • <3>、 执行循环变量变化部分,改变循环变量的值,以便进行下一次条件判断
  • <4>、 依次重新执行< 2 >、< 3 >、< 4 >,直到退出循环

特点:相比 while 和 do...while 语句结构更加简洁易读

1、 for 关键字后面括号中的三个表达式必须用 “;” 隔开,三个表达式都可以省略,但 “;” 不能省略。

    a. 省略“循环变量初始化”,可以在 for 语句之前由赋值语句进行变量初始化操作,如:

    b. 省略“循环条件”,可能会造成循环将一直执行下去,也就是我们常说的“死循环”现象,如:

在编程过程中要避免“死循环”的出现,因此,对于上面的代码可以在循环体中使用 break 强制跳出循环(关于 break 的用法会在后面介绍)。

    c. 省略“循环变量变化”,可以在循环体中进行循环变量的变化,如:

2、 for 循环变量初始化和循环变量变化部分,可以是使用 “,” 同时初始化或改变多个循环变量的值,如:

代码中,初始化变量部分同时对两个变量 i 和 j 赋初值,循环变量变化部分也同时对两个变量进行变化,运行结果:

3、 循环条件部分可以使用逻辑运算符组合的表达式,表示复杂判断条件,但一定注意运算的优先级,如:

代码中,必须同时满足变量 i 小于 10 ,并且 i 不等于 5 时才会进行循环,输出变量 i 的值。

在 Java 中,我们可以使用 break 语句退出指定的循环,直接执行循环后面的代码。

continue 的作用是跳过循环体中剩余的语句执行下一次循环。

 

循环体中包含循环语句的结构称为多重循环。三种循环语句可以自身嵌套,也可以相互嵌套,最常见的就是二重循环。在二重循环中,外层循环每执行一次,内层循环要执行一圈。

 

 

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值