「二分类算法」提供银行精准营销解决方案详解(随机森林)

 

 

这些数据与葡萄牙银行机构的营销活动相关。这些营销活动以电话为基础,一般,银行的客服人员需要联系客户至少一次,以此确认客户是否将认购该银行的产品(定期存款)。
通过与葡萄牙银行机构的直销活动(电话)有关的一些数据,预测客户是否会订阅定期存款(变量Y)。这对于实际生产有着巨大作用,可以通过这个预测结果对未来的工作进行一个初步规划,同时也可以对某些用户是否会订阅定期存款提供一个参照等;
 

数据说明:


客户信息:
Age:年龄
Job:工作,工作类型(分类:“行政管理”、“蓝领”、“企业家”、“女佣”、“管理”、 “退休”、“个体户”、“服务”、“学生”、“技术员”、“失业”、“未知”)
Marital:婚姻,婚姻状况(分类:离婚,已婚,单身,未知)(注:“离婚”指离婚或丧偶)
Education:教育(分类:‘基本.4y’,‘Basy.6y’,‘Basy.9y’’,‘Health.学校’,‘文盲’,‘专业’课程,‘大学学位’,‘未知’)
Default:违约,信用违约吗?(分类:“不”,“是”,“不知道”)
Housing:房,有住房贷款吗?(分类:“不”,“是”,“不知道”)
Loan:贷款,有个人贷款吗?((分类:“不”,“是”,“不知道”)

预测相关的其他数据:
Contact:接触方式(分类:“移动电话”,“固定电话”)
Month:月,最后一个联系月份(分类:‘MAR’,…,‘NOV’,’DEC’)
Day_of_week:每周的天数,最后一周的联系日(分类):“Mon”、“Tee”、“We”、“TUU”、“FRI”
Duration:持续时间,最后的接触持续时间,以秒为单位
Campaign:在这次战役和这个客户联系的执行人数量
Pdays:客户上次从上次活动中联系过去之后的天数(数字;999表示以前没有联系过客户)
Previous:本次活动之前和本客户端的联系人数(数字)
Proutcome:前一次营销活动的结果(分类:失败,不存在,成功)

社会和经济背景属性
EMP.var.rate:就业变化率-季度指标(数字)
cons.price.idx:消费者价格指数-月度指标(数字)
cons.conf.idx:消费者信心指数-月度指标(数字)
euribor3m::欧元同业拆借利率3个月利率-每日指标(数字)
nr.employed:员工人数-季度指标(数字)

输出变量:
Y -客户是否会定期存款?“是”、“否”

 

 

代码及详解:

 

导入各种包

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

查看数据

#查看数据集
data = pd.read_csv('L:\k-lab\\train_set.csv')
print(data.head())

#查看数据概述
print(data.describe())

 

describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、freq(最高频数)

count   195.000000  #数量

mean   2744.595385 #均值

std     424.739407 #标准差

min     865.000000 #最小值

25%    2460.600000 #下四分位

50%    2655.900000 #中位数

75%    3023.200000 #上四分位

max    4065.200000 #最大值

 

range  3200.200000 #极差max-min

var       0.154755 #变异系数 std/mean

 

dis     562.600000 #四分位间距 75%-25%

四分位数(Quartile)是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。

第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。

第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。

第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。

第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。

 

数据预处理

  1. 删除用户ID
  2. 缺失值处理,观察数据可以得知,数值型变量没有缺失,非数值型变量可能存在unknown值。

将'job','marital','education','default','housing','loan','contact','poutcome'这些类别变量进行哑变量处理。

由于最后一次联系的时间(几号)、最后一次联系的时间(月份)、距离上次活动最后一次联系该客户这个三个特征有重合,并且前两个字段无法说明距今时间长度,故删除前两个字段。

data.drop(['ID','day','month'], axis=1, inplace=True)
#矩阵表示位置关系
dummy = pd.get_dummies(data[['job','marital','education','default','housing','loan','contact','poutcome']])
#相同字段的表首尾相接,这里是指列拼接
data = pd.concat([dummy, data], axis=1)
#删除重复的部分
data.drop(['job','marital','education','default','housing','loan','contact','poutcome'], inplace=True, axis=1)

# drop不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据。
# drop函数默认删除行,列需要加axis = 1
# 凡是会对原数组作出修改并返回一个新数组的,往往都有一个 inplace可选参数。如果手动设定为True(默认为False),那么原数组直接就被替换。也就是说,采用inplace=True之后,原数组名(如2和3情况所示)对应的内存值直接改变;
# 而采用inplace=False之后,原数组名对应的内存值并不改变,需要将新的结果赋给一个新的数组或者覆盖原数组的内存位置(如1情况所示)。

虚拟变量称或哑变量,用以反映质的属性的一个人工变量,通常取值为0或1

无序多分类变量,引入模型时需要转化为哑变量 数据量化&哑变量

对于有n个分类属性的自变量,通常需要选取1个分类作为参照,因此可以产生n-1个哑变量

数据:

dummy:

 

data:

data.drop之后:


 

拆分数据集

from sklearn.model_selection import train_test_split
X = data[data.columns[:-1]]   #从0到倒数第一列
y = data.y                  #只包括data的y这一列
#测试集占训练集30%
Xtrain, Xtest, ytrian, ytest = train_test_split(X, y, test_size=0.3, random_state=90)

X_train,X_test, y_train, y_test =cross_validation.train_test_split(train_data,train_target,test_size=0.3, random_state=0)

train_data:被划分的样本特征集

train_target:被划分的样本标签

test_size:如果是浮点数,在0-1之间,表示样本占比;如果是整数的话就是样本的数量

random_state:是随机数的种子。随机种子(一个整数),其实就是一个划分标记,对于同一个数据集,如果rondom_state相同,则划分结果也相同。这里取90保证每次运行划分的结果都是一样的

X:

y:

 

确定随机森林数目、建模并调参

scorel = []
for i in range(0,200,10):      #从[0,200)只取能被10整除的数
	#第一次的学习曲线,可以先用来帮助我们划定范围,我们取每十个数作为一个阶段,来观察n_estimators的变化如何引起模型整体准确率的变化
    rfc = RandomForestClassifier(n_estimators=i+1,   #森林里(决策)树的数目。   #criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点。
                                    n_jobs=-1,			#用于拟合和预测的并行运行的工作(作业)数量。因为可以并行从而提高性能。1=不并行;n:n个并行;-1:CPU有多少core,就启动多少job
                                    random_state=90)
    score = cross_val_score(rfc,Xtrain,ytrian,cv=10).mean()    #过传入的模型,训练十次,最后将十次结果求平均值。将每个数据集都算一次
     #交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。
    scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()

 

通过10重交叉验证,绘制学习曲线,确定模型森林数目为161,最高得分为0.8969

但是我们并不知道最高得分确实在161还是在其附近,所以需在161范围再进行一次验证

 

 

调参第二步:细化学习曲线    放大部分内容

scorel = []
for i in range(155,156):
    rfc = RandomForestClassifier(n_estimators=i,
                                n_jobs=-1,
                                random_state=90)
    score = cross_val_score(rfc,Xtrain,ytrian,cv=10).mean()
    scorel.append(score)
print(max(scorel),([*range(155,166)][scorel.index(max(scorel))]))
plt.figure(figsize=[20,5])
plt.plot(range(155,166),scorel)
plt.show()

结果:

164是最合适的森林数目

 

网格搜索法确定其他参数

我们将使用网格搜索对参数一个个进行调整。

开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_

param_grid = {'max_depth':np.arange(1, 20, 1)}
print(" 11 ", param_grid)

rfc = RandomForestClassifier(n_estimators=164
                            ,random_state=90)
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(Xtrain,ytrian)
print(GS.best_params_,": 1 :",GS.best_score_)

{'max_depth': 14} 0.8996106314542068

经过漫长的计算,终于得到了结果。可以看到在树的最大层数为14层时,得到了最高分:0.8996,较之前上升了0.0004。我们确定下来max_depth=14。


调整min_samples_leaf

param_grid = {'min_samples_leaf':np.arange(1, 20, 1)}
print(" 22 ", param_grid)
rfc = RandomForestClassifier(n_estimators=164
                           ,random_state=90
                           )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(Xtrain,ytrian)
print(GS.best_params_,": 2 :",GS.best_score_)

{'min_samples_leaf': 7} 0.899046329213927

 

建立模型

rfc = RandomForestClassifier(n_estimators=181, max_depth=14, random_state=90)
rfc.fit(Xtrain, ytrian)
rfc.score(Xtest, ytest)

输出比赛结果


data2 = pd.read_csv('L:\k-lab\\test_set.csv')
ID = data2.ID

data2.drop(['ID','day','month'], axis=1, inplace=True)
#矩阵表示位置关系
dummy = pd.get_dummies(data[['job','marital','education','default','housing','loan','contact','poutcome']])
#相同字段的表首尾相接,这里是指列拼接
data2 = pd.concat([dummy, data2], axis=1)
#删除重复的部分
data2.drop(['job','marital','education','default','housing','loan','contact','poutcome'], inplace=True, axis=1)



pred = rfc.predict_proba(data2)
data3 = pd.DataFrame(pred, index=ID, columns=['pred0', 'pred'])
data3.drop('pred0', axis=1, inplace=True)
data3.to_csv('result.csv')

 

 

  • 12
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值