FZU 1759 Super A^B mod C (欧拉函数,快速幂,降幂公式)

11 篇文章 0 订阅
2 篇文章 0 订阅

题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759

一道吓人的题。。

不禁再次感叹数学真伟大,使用下面的降幂公式很简单就写出来了。


phi是欧拉函数,如果不太清楚欧拉函数是什么,怎么求欧拉函数,可以看看下面这两个博客,或者参考维基百科。

http://blog.csdn.net/leolin_/article/details/6642096

http://blog.csdn.net/once_hnu/article/details/6302868  (直接法和筛选法求欧拉函数值)


学会了求欧拉函数值,我们就可以利用上面那个降幂公式来计算结果了。

参考博客:http://blog.csdn.net/t1019256391/article/details/37595993  感谢!


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll phi(ll n) {   //直接法求欧拉函数值 
	int res = n, a = n;
	int i;
	for(i = 2; i * i <= a; i++) {
		if(a % i == 0) {
			res -= res / i;
			while(a % i == 0) a /= i;
		}
	}
	if(a > 1) res -= res / a;
	return res;
}
ll qpow(ll a, ll b, ll c) {  //快速幂 
	ll res = 1;
	while(b) {
		if(b&1) res = res * a % c;
		a = a * a % c;
		b >>= 1;
	}
	return res;
}
int main() {
	ll a, c;
	char b[1000010];
	while(~scanf("%I64d %s %I64d", &a, b, &c)) {
		ll phic = phi(c);
		a %= c;
		int i, len = strlen(b);
		ll res = 0;
		for(i = 0; i < len; i++) {
			res = res * 10 + b[i] - '0';
			if(res > phic) break;  //降幂公式的条件,只有指数大于phi(c)才可用 
		}
		if(i == len) {
			printf("%I64d\n", qpow(a, res, c));  //指数小于等于phi(c),直接计算 
		}
		else {
			res = 0;  //降幂 
			for(i = 0; i < len; i++) {
				res = res * 10 + b[i] - '0';
				res %= phic;
			}
			printf("%I64d\n", qpow(a, res + phic, c));
		}
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值