简单快速幂 欧拉函数降幂

点击打开链接

给a,b,c三个数字,求a的b次幂对c取余

Input

多组样例循环输入,每一组输入a,b,c (1<=a,c<=10^9,1<=b<=10^1000000).

Output

对于每一组a,b,c,输出a^b%c

样例输入
1 1 1
2 2 2
139123 123124121241452124412124 123121
样例输出
0
0
8984

降幂公式:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define  ll long long
#define N 1000100
using namespace std;
char b[N];
ll p[N];
ll a, c;
ll quick(ll a, ll b){ //快速幂
    ll k = 1;
    while(b){
        if(b%2==1){
            k = k*a;
            k %=c;
        }
        a = a*a%c;
        b /=2;
    }
    return k;
}
void priem(){
    memset(p, 0, sizeof(p));
    ll i, j;
    p[1] = 1;
    for(i=2; i<=sqrt(N); i++){
        for(j=2; j<=N/i; j++)
            p[i*j] = 1;
    }
}
ll ola(ll n){ //欧拉函数
    ll i, r, aa;
    r = n;
    aa = n;
    for(i=2; i<=sqrt(n); i++){
        if(!p[i]){
            if(aa%i==0){
                r = r/i*(i-1);
                while(aa%i==0)
                    aa /= i;
            }
        }
    }
    if(aa>1)
        r = r/aa*(aa-1);
    return r;
}
int main(){
    ll d, i;
    priem();
    while(scanf("%ld%s%ld",&a,b,&c)!=EOF){
        ll l = strlen(b);
        ll B=0;
        ll oc = ola(c);
      //  cout<<"oc = "<<oc<<endl;
        for(i=0; i<l; i++){
            B = B*10+b[i]-'0';
            if(B>oc)
                break;
        }
        //cout<<i<<endl;
        if(i==l)
            d = quick(a,B);
        else{
            B=0;
            for(i=0; i<l; i++){ //降幂
                B = (B*10+b[i]-'0')%oc;
            }
            d = quick(a,B+oc);
        }
      //  printf("B= %I64d\n",B);
        printf("%ld\n",d);
    }
    return 0;
}


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxn 1000006
#define ll long long
using namespace std;
char s[maxn];
ll ol(ll x)
{
    ll i,res=x;
    for(int i=2;i*i<=x;i++){
        if(x%i==0){
            res=res-res/i;
            while(x%i==0)
                x/=i;
        }
    }
    if(x>1)
        res=res-res/x;
    return res;
}
ll quick(ll x,ll y,ll MOD)
{
    ll res=1;
    while(y){
        if(y%2)
            res=res*x%MOD;
        x=x*x%MOD;
        y/=2;
    }
    return res;
}
int main()
{
    ll a,c,i,ans,tmp,b;
    while(scanf("%lld%s%lld",&a,s,&c)!=EOF){
        ans=0;b=0;tmp=ol(c);
        ll len=strlen(s);
        for(int i=0;i<len;i++)
            b=(b*10+s[i]-'0')%tmp;
        b+=tmp;
        ans=quick(a,b,c);
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值