给定一个二叉树,返回它的中序 遍历。
示例:
输入: [1,null,2,3]
1
2
/
3
输出: [1,3,2]
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
解题思路:二叉树的中序遍历:左根右。采用递归的思路很简单。直接看代码吧。
代码1:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
//使用递归确实很简单、满足左、根、右即可。
class Solution {
public:
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
inorder(root, res);
return res;
}
void inorder(TreeNode *root, vector<int> &res) {
if (!root)
return;
if (root->left)
inorder(root->left, res);
res.push_back(root->val);
if (root->right)
inorder(root->right, res);
}
};
代码2
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
if(root){
inorderTraversal(root->left);
res.push_back(root->val);
inorderTraversal(root->right);
}
return res;
}
private:
vector<int> res;
};
迭代的解题思路1:
从根节点开始,先将根节点压入栈,然后再将其所有左子结点压入栈,然后取出栈顶节点,保存节点值,再将当前指针移到其右子节点上,若存在右子节点,则在下次循环时又可将其所有左子结点压入栈中。这样就保证了访问顺序为左-根-右。
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
p = p->left;
} else {
TreeNode *t = s.top(); s.pop();
res.push_back(t->val);
p = t->right;
}
}
return res;
}
};
迭代的解题思路2:
个人觉得没有思路一好。
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
p = p->left;
}
else {
TreeNode *t = s.top();
s.pop();
res.push_back(t->val);
p = t->right;
}
}
return res;
}
};
迭代的解题思路3:
使用Threaded binary tree,算法如下:1. 初始化指针cur指向root。2. 当cur不为空时,如果cur没有左子结点,a) 打印出cur的值。 b) 将cur指针指向其右子节点。反之,将pre指针指向cur的左子树中的最右子节点,若pre不存在右子节点,a) 将其右子节点指回cur。b) cur指向其左子节点。反之,a) 将pre的右子节点置空。b) 打印cur的值。c) 将cur指针指向其右子节点。
class Solution {
public:
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
if (!root) return res;
TreeNode *cur, *pre;
cur = root;
while (cur) {
if (!cur->left) {
res.push_back(cur->val);
cur = cur->right;
} else {
pre = cur->left;
while (pre->right && pre->right != cur) pre = pre->right;
if (!pre->right) {
pre->right = cur;
cur = cur->left;
} else {
pre->right = NULL;
res.push_back(cur->val);
cur = cur->right;
}
}
}
return res;
}
};