最短路径:(Dijkstra、Floyd)、最小生成树:(Prim、Kruscal)算法记忆

本文深入探讨图算法中的关键概念,包括最短路径算法Dijkstra和Floyd,以及最小生成树算法Prim和Kruskal。详细解析了每种算法的工作原理、时间复杂度及应用场景。

最短路径:
Dijkstra(单源,未优化为O(n2),用堆优化排序后为O((m+n)logn)):设一个集合A,最开始只包含起始点,找到与A集合相连距离最小的边,并把对应点加入集合,如果经过加入的点路径更短,则更新点之间的距离,重复上述步骤直到所有点加入集合A。
Floyd(多源,O(n3)):用三个循环遍历得出最小路径,从i号顶点到j号顶点只经过前k号顶点的最短路程。
最小生成树:
Prim(选最小边加点,和Dijkstra相同):首先以一个结点作为最小生成树的初始结点,然后以迭代的方式找出与最小生成树中各结点权重最小边,并加入到最小生成树中。加入之后如果产生回路则跳过这条边,选择下一个结点。当所有结点都加入到最小生成树中之后,就找出了连通图中的最小生成树了。
Kruscal(时间复杂度:O(|E|log|E|),E为边数):
1.将图各边按照权值进行排序
2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。不符合条件则继续遍历图,寻找下一个最小权值的边。
3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值