首先树的概念:1.树是N个结点的有限集。N = 0称为空树。在任意一个非空树中:有且仅有一个特定的称为根的结点(唯一)。2.N>1时,其余节点可分为M个互不相交的有限集T1,T2...Tm,其中每一个集合本身又是一棵树,称为根的子树。注:树的定义具有递归性,即树中还有树。3.结点拥有的子树数称为该结点的度。度为0的结点称为叶结点或终端结点;度不为0的结点成为非终端结点或分支结点。除根节点外,分支结点也称为内部节点。树的度是树内各结点的度的最大值。
而二叉树的概念是:二叉树是N个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根节点和两棵互不相交的子树组成,称为左子树和右子树。
二叉树的每个结点最多有两棵子树,左子树和右子树是有顺序的,某结点只有一棵子树。
所以说个人认为二叉树更适合计算机编译进行。
下面是二叉树输出代码:
#include <stdio.h>
#include <stdlib.h>
#define MAX 20typedef char ElementType;
typedef struct treenode
{
ElementType value;
struct treenode* left;
struct treenode* right;
}*TreeNode;void init(TreeNode* t);//初始化树
void create1(TreeNode* t);//非递归的方式创建树
void create2(TreeNode *t);//使用递归创建树
void previsit(TreeNode t);//前序遍历树,先访问根节点再访问左子树再访问右子树
void midvisit(TreeNode t);//中序遍历树
void tailvisit(TreeNode t);//后序遍历树
void levelvisit(TreeNode t);//按层遍历树
int depth(TreeNode t);//返回树的深度
void update(TreeNode t,ElementType old_value,ElementType new_value);//将树中所有的old_value值更新为new_value
void print(TreeNode t);//以广义表示法进行输出
void display(TreeNode t,int format);//以目录表示法进行输出
void clear(TreeNode* t);//清空树char *string = "A(B(D,E(G,H)),C(F( ,I), ))";//广义表示法
char *str = "ABD##EA##H##CA#I###";//扩展二叉树int main()
{
TreeNode tree;
init(&tree);
create1(&tree);
//create2(&tree);
previsit(tree);
printf("\n");
midvisit(tree);
printf("\n");
tailvisit(tree);
printf("\n");levelv