poi-tl生成word多张图表及图片

模板

图表模板
多张图片模板

生成效果

在这里插入图片描述

在这里插入图片描述

实现代码

官方文档
引入word依赖

<dependency>
        <groupId>com.deepoove</groupId>
        <artifactId>poi-tl</artifactId>
        <version>1.10.3</version>
	    </dependency>

数据准备

Map<String, Object> dataObj = new HashMap<>();
		// 水质折线图
		if (wqDataMap != null && !wqDataMap.isEmpty()) {

			Set<Long> keySet = wqDataMap.keySet();
			if (keySet != null && keySet.size() > 0) {
				int index = 0;
				String wqTitle = "";
				// 区块对
				List<Map<String, Object>> wqSections = new ArrayList<Map<String, Object>>();
				// totalWqCod totalWqNhn
				ChartMultiSeriesRenderData totalCodLine = new ChartMultiSeriesRenderData();
				totalCodLine.setChartTitle("cod");
				ChartMultiSeriesRenderData totalNhnLine = new ChartMultiSeriesRenderData();
				totalNhnLine.setChartTitle("nhn");
				List<SeriesRenderData> codSeriesRenderDatas = new ArrayList<SeriesRenderData>();
				List<SeriesRenderData> nhnSeriesRenderDatas = new ArrayList<SeriesRenderData>();

				for (Long sid : keySet) {
					Map<String, Object> data = new HashMap<String, Object>();
					index++;
					wqTitle = stationMap.get(sid);
					List<StandardWaterQualityVo> wqlist = wqDataMap.get(sid);
					ArrayList<String> timeList = new ArrayList<String>();
					ArrayList<Double> nhnList = new ArrayList<Double>();
					ArrayList<Double> codList = new ArrayList<Double>();
					for (StandardWaterQualityVo vo : wqlist) {
						timeList.add(sdf.format(vo.getCollectTime()));
						nhnList.add(vo.getNhn());
						codList.add(Double.valueOf(String.valueOf(vo.getCod())));
					}
					// 总图
					if (index == 1 || timeList.size() > wqTimeListSize) {
						totalCodLine.setCategories(timeList.toArray(new String[wqTimeListSize]));// 类别
						totalNhnLine.setCategories(timeList.toArray(new String[wqTimeListSize]));// 类别

					}
					codSeriesRenderDatas
							.add(new SeriesRenderData(wqTitle, codList.toArray(new Double[wqTimeListSize])));
					nhnSeriesRenderDatas
							.add(new SeriesRenderData(wqTitle, nhnList.toArray(new Double[wqTimeListSize])));
					// 分图
					ChartMultiSeriesRenderData codLine = new ChartMultiSeriesRenderData();
					codLine.setChartTitle(wqTitle + "cod");
					codLine.setCategories(timeList.toArray(new String[timeList.size()]));// 类别
					List<SeriesRenderData> seriesRenderDatas1 = new ArrayList<SeriesRenderData>();
					seriesRenderDatas1.add(new SeriesRenderData("cod", codList.toArray(new Double[codList.size()])));
					codLine.setSeriesDatas(seriesRenderDatas1);

					ChartMultiSeriesRenderData nhnLine = new ChartMultiSeriesRenderData();
					nhnLine.setChartTitle(wqTitle + "nhn");
					nhnLine.setCategories(timeList.toArray(new String[timeList.size()]));// 类别
					List<SeriesRenderData> seriesRenderDatas2 = new ArrayList<SeriesRenderData>();
					seriesRenderDatas2.add(new SeriesRenderData("nhn", nhnList.toArray(new Double[nhnList.size()])));
					nhnLine.setSeriesDatas(seriesRenderDatas2);

					data.put("wqCod", codLine);
					data.put("wqNhn", nhnLine);
					data.put("wqTitle", "1." + index + "." + wqTitle);
					wqSections.add(data);

				}

				totalCodLine.setSeriesDatas(codSeriesRenderDatas);
				totalNhnLine.setSeriesDatas(nhnSeriesRenderDatas);
				dataObj.put("wqTimeStr", wqTimeStr);
				dataObj.put("wqSections", wqSections);
				dataObj.put("totalWqNhn", totalNhnLine);
				dataObj.put("totalWqCod", totalCodLine);
			}

		}

		// 污水图像识别
		if (monitorDataMap != null && !monitorDataMap.isEmpty()) {
			Set<Long> mKeySet = monitorDataMap.keySet();
			if (mKeySet != null && mKeySet.size() > 0) {
				int mIndex = 0;
				String monitorTitle = "";
				// 区块对
				List<Map<String, Object>> monitorSections = new ArrayList<Map<String, Object>>();
				for (Long mId : mKeySet) {
					Map<String, Object> data = new HashMap<String, Object>();
					List<Map<String, Object>> monitorPhotoSections = new ArrayList<Map<String, Object>>();

					List<RecordDatasVo> monitorList = monitorDataMap.get(mId);
					mIndex++;
					monitorTitle = stationMap.get(mId);

					if (monitorList != null && monitorList.size() > 0) {
						for (RecordDatasVo vo : monitorList) {
							String propName = vo.getPropName();
							String propValue = vo.getPropValue();
							if (propName.equals("photo")) {
								try {

									Map<String, Object> data0 = new HashMap<String, Object>();
									Date collectTime = vo.getCollectTime();
									// 获取图片
									String bucket = minioProperties.getBucketName();
									String dir = propValue;
									if (dir.length() > 0 && dir.startsWith("/")) {
										dir = dir.substring(1);
										log.info(dir);
									}
									S3Object object = minioTemplate.getObject(bucket, dir);

									// minioTemplate.getSingleObjectStream(bucket, dir, fileInputStream);
									// data0.put("monitorPhoto", Pictures.ofStream(new FileInputStream("temp" +
									// propValue))
									// .size(528, 297).create());
									data0.put("monitorPhoto",
											Pictures.ofStream(object.getObjectContent()).size(528, 297).create());
									monitorPhotoSections.add(data0);
								} catch (Exception e) {
									// TODO Auto-generated catch block
									log.info("@monitorPhotoError:" + propValue + "{}", e);
									e.printStackTrace();
								}
							}

						}
						data.put("monitorTitle", "2." + mIndex + "." + monitorTitle);
						data.put("monitorPhotoSections", monitorPhotoSections);
						monitorSections.add(data);

					}

				}
				dataObj.put("monitorSections", monitorSections);
			}

导出

String path = "";

		// 第一种:获取类加载的根路径
		path = this.getClass().getResource("/").getPath();
		System.out.println(path);
		XWPFTemplate template = XWPFTemplate.compile(path + "temp\\template.docx").render(dataObj);
		FileOutputStream out;
		try {
			out = new FileOutputStream("I:/template0.docx");
			template.write(out);
			response.setContentType("application/vnd.ms-excel");
			response.setHeader("Content-Disposition",
					"attachment;filename=" + new SimpleDateFormat("yyyyMMddHHmm").format(new Date()) + ".docx");
			response.setContentType("application/octet-stream;charset=utf-8");
			OutputStream ouputStream = response.getOutputStream();
			template.write(ouputStream);
			ouputStream.flush();
			ouputStream.close();
			template.close();

踩坑

  1. 生成图表只出现打印地址
    如:com.deepoove.poi.data.ChartMultiSeriesRenderData.对象地址
    解决:图表为引用标签,需要在模板文件中提前插入图表并且设置 可替换文字为{{String}}格式的引用标签即可解决
  2. 生成图片不显示没效果
    控制台打印以下信息:The data [null] of the template {{@monitorPhoto}} is illegal, will apply

解决:
模板文档中图表标签要以@开头作为标识,但代码中组织数据结构是不需要加@符,只需要后面的文字 标识
在这里插入图片描述

  1. 多系列图表中categories和seriesDatas子集数组长度需要一致否则会报错
    错误信息:TemplateRenderPolicy render error
    Category and values must have the same point count.

  2. 模板文档中部分标题文字的自定义的格式,可能会使生成的文档格式错乱。列表标题或是自动生成目录都可能存在格式错乱。建议{{标签}}暂时先别使用格式,效果实现后再添加word格式。

  3. 区块对标签:{{?sections}}{{/sections}},存在多重循环时数据可以嵌套叠加使用

<think>嗯,用户想用poi-tl在Excel中生成折线图,需要示例代码。首先,我得回忆一下poi-tl的文档和相关扩展。记得poi-tl默认支持表格、文本、图片等,但图表可能需要扩展包,比如poi-tl-ext或者使用特定的插件。 查一下引用,引用[4]提到了poi-tl-ext,扩展版可能支持更多功能。引用[2]里的插件有处理图表的策略,比如MultiSeriesChartTemplateRenderPolicy和SingleSeriesChartTemplateRenderPolicy。这说明生成图表可能需要这些策略。 用户需要折线图,属于图表类型。所以步骤应该是:准备数据,应用图表渲染策略,插入占位符,然后生成文档。示例代码可能需要创建ChartMultiSeriesRenderData对象,设置类别和系列数据,然后绑定到模板的某个标签,比如{{lineChart}}。 需要注意版本兼容性,可能需要引入正确的依赖,比如poi-tlpoi的版本是否匹配。另外,模板中需要预先有图表的占位符,并且使用正确的标签语法。可能还需要配置渲染策略,将图表插件添加到配置中。 用户可能遇到的问题包括依赖缺失、标签未正确设置或数据格式错误。应该提醒用户检查这些点,并提供参考链接或文档。</think>以下是如何使用 poi-tl 在 Excel 中生成折线图的实现步骤和示例代码: ### 1. 添加依赖 需确保已包含 poi-tl 核心库及扩展包: ```xml <dependency> <groupId>com.deepoove</groupId> <artifactId>poi-tl</artifactId> <version>1.12.0</version> </dependency> <dependency> <groupId>com.deepoove</groupId> <artifactId>poi-tl-ext</artifactId> <version>0.2.0</version> </dependency> ``` ### 2. 模板准备 在 Word 模板中使用双大括号标记占位符: ``` {{lineChart}} ``` ### 3. 数据构造与渲染 ```java // 创建图表数据对象 ChartMultiSeriesRenderData chart = new ChartMultiSeriesRenderData(); chart.setChartTitle("销售趋势图"); // 设置标题 chart.setCategories(new String[]{"Q1", "Q2", "Q3", "Q4"}); // X轴分类 // 添加数据系列 ChartMultiSeriesRenderData.Series series1 = chart.newSeries(); series1.setSeriesName("2023年"); series1.setValues(new Double[]{1200.5, 2300.0, 1850.3, 2780.6}); ChartMultiSeriesRenderData.Series series2 = chart.newSeries(); series2.setSeriesName("2022年"); series2.setValues(new Double[]{980.4, 2100.8, 1620.5, 2450.9}); // 绑定数据到模板 Map<String, Object> data = new HashMap<>(); data.put("lineChart", Charts.ofMultiSeries(chart).create()); // 执行渲染 XWPFTemplate template = XWPFTemplate.compile("template.docx").render(data); template.writeToFile("output.docx"); ``` ### 4. 配置渲染策略 需激活图表渲染插件: ```java Configure config = Configure.builder() .bind("lineChart", new MultiSeriesChartTemplateRenderPolicy()) .build(); ``` ### 关键注意事项 1. 依赖版本需匹配,避免出现类冲突 2. 模板中的占位符必须与代码中的键名完全一致 3. 数值数据需使用 Double 类型数组存储 4. 生成Word 文档需用 Excel 打开才能查看图表数据[^2][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值