自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 【3D视觉】PointNet论文阅读

点云是一种重要的几何数据结构。由于其格式不规则,大多数研究人员会将此类数据转换为规则的三维体素网格或图像集合。然而,这会导致数据量过大并引发问题。本文设计了一种新型神经网络,它直接处理点云数据,并很好地保留了输入点的置换不变性。PointNet 网络为对象分类、部件分割和场景语义解析等应用提供了统一的架构。PointNet 虽然简单,但却高效且有效。经验表明,它的性能与当前最佳技术相当甚至更好。从理论上讲,我们分析了该网络学到了什么,以及为什么它能够抵御输入扰动和损坏。

2025-05-07 16:45:52 1095 1

原创 【常用知识】word参考文献连续引用

word参考文献引用1、选中参考文献->自动编号(可根据需要自定义编号格式)2、在需要引用的地方,引用->交叉引用多个参考文献连续引用一、如果是两篇文献,如“限制了其在资源受限环境下的应用,如自动驾驶、辅助医疗和移动设备等[1,2]”1、按照上述步骤引用两个参考文献2、选中[1][2],右击切换域代码结果为:3、在下图所示位置分别加入【#“[0” 】、【#“0]” 】,并在两个{}中间加入逗号结果变成下图:4、选中域代码,右击更新域得到结果:二、如果是多

2024-10-15 17:16:39 3370

原创 语义分割论文阅读笔记7:DDRNet

语义分割是自动驾驶汽车理解周围场景的关键技术。当代模型的吸引人的性能通常是以繁重的计算和漫长的推理时间为代价的,这对于自动驾驶来说是无法忍受的。最近的方法使用轻量级架构(编码器-解码器或双路径)或对低分辨率图像进行推理,实现了非常快速的场景解析,甚至在单个 1080Ti GPU 上以超过 100 FPS 的速度运行。然而,这些实时方法与基于扩张主干的模型在性能上仍然存在显着差距。为了解决这个问题,我们提出了一系列专门为实时语义分割而设计的高效主干网。

2024-07-30 11:33:32 1098

原创 语义分割论文阅读笔记6

裂缝是桥梁养护的主要目标,准确检测裂缝有助于保证桥梁的安全使用。针对传统图像处理方法难以准确检测裂纹的问题,引入深度学习技术,提出一种基于改进的DeepLabv3+语义分割算法的裂纹检测方法。在网络结构上,DeepLabv3+网络中引入了密集连接的空洞空间金字塔池化模块,使得网络能够获得更密集的像素采样,从而增强网络提取细节特征的能力。在获得较大感受野的同时,网络参数数量与原算法保持一致。采集不同环境条件下的桥梁裂缝图像,建立混凝土桥梁裂缝分割数据集,通过网络的端到端训练得到分割模型。

2024-07-29 17:10:49 1917

原创 语义分割论文阅读笔记5

本文通过改进用于下水道缺陷分割的U-Net架构,提出了一种新颖的语义分割网络PipeUNet。为了增强特征提取能力并解决高级特征和低级特征之间的语义差异,在U-Net的原始跳跃连接之间添加了一个名为FRAM块的新模块。PipeUNet中使用focal loss来解决类别不平衡问题。PipeUNet 通过多个下水道检测系统的数据进行训练和测试。这给下水道管道带来了显着的多样性,并对模型的鲁棒性提出了巨大的挑战。该数据集包含四种典型缺陷,包括裂纹、渗透、接缝偏移和侵入侧向。

2024-07-25 15:43:14 1601

原创 语义分割论文阅读笔记4

目前在自然场景中训练的深度神经网络模型不能很好地迁移和应用于遥感图像语义分割。研究表明,包含模型融合的微调方法可以缓解这种困境。在本文中,我们提供了一种用于改进 U-Net 的方法,并提出了一种结合了 DenseNet、U-Net、扩张卷积和 DeconvNet 优点的端到端深度卷积神经网络(DCNN)。我们在Potsdam正射影像数据集上评估了所提出的方法和模型。与U-Net相比,我们的方法将PA、mPA和mIoU评估指标分别提高了11.1%、14.0%和13.5%;

2024-07-19 09:56:39 782 1

原创 语义分割论文阅读笔记3

针对当前语义分割算法中分割精度低、对象边界分割不准确的问题,提出利用多重损失函数约束和多级级联残差结构的语义分割算法。采用多层级联残差单元来增加网络层感受野的范围。构建并行网络提取不同深度特征信息,然后将不同深度特征信息与编码器输出特征融合,得到多个输出特征,与标签建立多个损失,从而约束模型优化网络。所提出的网络在 Cityscapes 和 CamVid 数据集上进行了评估。实验结果表明,该算法的平均交并比(MIoU)比原始Deeplabv3+算法分别提高了3.07%和3.59%。

2024-07-09 20:44:24 1639 1

原创 语义分割论文阅读笔记2

语义图像分割是一种端到端的分割方法,可以对目标区域进行逐像素分类。作为光学图像中经典的语义分割网络,DeepLabv3+能够实现良好的分割性能。然而,当该网络直接用于极化合成孔径雷达(PolSAR)图像的语义分割时,很难获得理想的分割结果。原因是由于 PolSAR 数据集较小,很容易产生过拟合。在本文中,提出了一种轻量级复值 DeepLabv3+ (L-CV-DeepLabv3+),用于 PolSAR 数据的语义分割。与原来的 DeepLabv3+ 相比,它有两个显着的优势。

2024-07-07 20:18:46 867 1

原创 语义分割论文阅读笔记1

遥感图像 (RSI) 的语义分割在许多领域都至关重要,因为 RSI 包含不同的景观和不同大小的地理对象,这使得语义分割具有挑战性。本文提出了一种称为自适应特征融合UNet(AFF-UNet)的卷积网络来优化语义分割性能。该模型具有三个关键方面:(1)密集跳跃连接架构和自适应特征融合模块,自适应地权衡不同级别的特征图以实现自适应特征融合,(2)通道注意卷积块,使用定制配置获取不同通道之间的关系,(3)获得不同位置之间关系的空间注意模块。

2024-07-05 17:05:14 1087 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除