语义分割论文阅读笔记6

Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+,2021,SCI Q1

论文地址

摘要

裂缝是桥梁养护的主要目标,准确检测裂缝有助于保证桥梁的安全使用。针对传统图像处理方法难以准确检测裂纹的问题,引入深度学习技术,提出一种基于改进的DeepLabv3+语义分割算法的裂纹检测方法。在网络结构上,DeepLabv3+网络中引入了密集连接的空洞空间金字塔池化模块,使得网络能够获得更密集的像素采样,从而增强网络提取细节特征的能力。在获得较大感受野的同时,网络参数数量与原算法保持一致。采集不同环境条件下的桥梁裂缝图像,建立混凝土桥梁裂缝分割数据集,通过网络的端到端训练得到分割模型。实验结果表明,改进的DeepLabv3+算法比原DeepLabv3+算法具有更高的裂纹分割精度,平均相交率达到82.37%,裂纹细节分割更加准确,证明了该算法的有效性。

引言

裂缝作为桥梁的主要问题之一,是桥梁检测和维护的重点目标。采取有效措施检测桥梁裂缝有利于维护交通安全和正常运营。手动裂纹检测方法比较简单,依靠人工观察来寻找裂纹,但很容易漏掉裂纹,导致检测效率较低。在大型桥梁特别是海上桥梁的检测中,主要工作地点是桥外高空,这大大增加了检测工作的风险。因此,有必要实现桥梁裂缝的高效自动化检测。

近年来,随着深度学习技术的快速发展,各种深度学习网络被提出,目标检测算法也取得了巨大突破。Girshick et al.在2013年提出了R-CNN(Regions with CNN Features)网络,在VOC(Visual Object Classes)数据集上取得了很好的精度。Girshick et al.对之前提出的R-CNN算法进行了优化和改进,提出了Fast R-CNN网络。由于网络仍然采用选择性搜索策略,因此速度上仍然有所欠缺。后来,Ren et al.提出了Faster R-CNN网络,用RPN(Region Proposal Network)替代了Fast R-CNN中的选择性搜索网络,提高了网络的速度。 2016年,Redmon提出了YOLO(You Only Look Once)算法。该网络可以同时进行检测框回归和目标分类,大大加快了网络的检测速度。此后,YOLOv2、YOLOv3、YOLOv4逐渐被提出。Liu et al.提出了SSD(Single Shot MultiBox Detector)算法。该算法在VGG16(Visual Geometry Group)的基础上增加了卷积层,实现多尺度检测,在保证检测速度的前提下提高检测精度。Lin et al.在 2017年提出了RetinaNet网络,利用Focal Loss解决了训练中类别不平衡的问题,进一步提高了目标检测的准确性。此外,2019年还提出了CornerNetExtremeNetCenterNet等多种目标检测算法。

随着检测需求的不断增加,有些物体利用物体检测算法无法获得理想的检测效果。因此,有学者研究了基于深度学习的图像分割算法。Long et al.在2015年提出了FCN(全卷积网络)网络,可以获得像素级的分割结果。Badrinarayanan et al.提出了SegNet,可以获得原始图像大小的语义分割结果。Ronneberger et al.提出了 U-Net,它由捕获上下文的收缩路径和实现精确定位的对称扩展路径组成。 Chen et al.提出的DeepLab系列算法,具有较高的分割精度。 DeepLabv1引入了空洞卷积操作,在不改变网络参数数量的情况下增加了感受野的范围,并获得了更好的分割结果。近年来,作者在DeepLabv1的基础上,先后提出了DeepLabv2、DeepLabv3和DeepLabv3+,通过优化网络结构逐步提高算法分割性能。Zhao et al.提出了PSPNet(金字塔场景解析网络),引入金字塔池化模块,使网络具有理解全局信息的能力。

####### 引出方法
针对网络检测桥梁小裂缝精度不够的问题,提出一种基于Dense-DeepLabv3+网络的桥梁裂缝图像分割算法。通过在DeepLabv3+网络中引入密集连接的空洞空间金字塔池化模块,生成更多的检测尺度,像素采样覆盖更密集,提高了网络特征提取的能力。采集不同环境条件下桥梁裂缝图像,建立数据集。通过训练原始网络和改进网络得到分割模型。通过对比实验验证了网络分割的性能,证明了本文改进的DeepLabv3+算法的有效性。

方法

为了使网络能够更好地提取裂缝特征,在原有DeepLabv3+网络结构的基础上,由原来的独立分支的方法改为多孔空间金字塔池化模块。密集连接方法可以实现更密集的像素采样,提高算法的特征提取能力。改进后的Dense-DeepLabv3+网络结构如图所示。

参考DenseNet的网络结构,通过密集连接对DeepLabv3+网络的ASPP模块进行改进,如图中黄色虚线框所示,在原有的3个空洞卷积并行的基础上增加了串联结构。将空洞率较小的空洞卷积的输出与主干网络的输出进行级联,然后一起送入空洞率较大的空洞卷积,以达到更好的特征提取效果。
在这里插入图片描述

  • 密集连接的ASPP模块可以在计算中使用更多的像素。空洞卷积的像素采样比普通卷积稀疏,感受野更大。ASPP模块密集连接后,空洞率逐层增大空洞率较大的层使用空洞率较小的层的输出作为输入,使得像素采样更加密集,提高了像素的利用率。

  • 原来的ASPP模块并行工作,各分支不共享任何信息,而改进后的模块通过跳层连接实现信息共享。不同空洞率的空洞卷积相互依赖,增大了感受野的范围

  • 密集连接的ASPP模块虽然可以获得更密集的像素采样和更大的感受野,但同时也增加了网络参数的数量,从而会影响网络的运行速度。为了解决这个问题,在密集连接后的每个空洞卷积之前使用1×1卷积来减少特征图的通道数,从而减少网络的参数数量,提高网络的表达能力。

实验及结果分析

  • 评价指标
    像素精度(PA):计算正确分类的像素数与所有像素数的比率。
    在这里插入图片描述
    平均像素精度(MPA):按类计算正确分类像素的比例,最后按类总数求平均。
    在这里插入图片描述
    在这里插入图片描述
  • 原始 DeepLabv3+ 和 Dense-DeepLabv3+ 结果的比较。
    在这里插入图片描述
    Class_0代表除裂纹之外的背景部分的MIoU值,Class_1代表裂纹的MIoU值,Overall代表整体的MIoU值。
  • 原始 DeepLabv3+ 和 Dense-DeepLabv3+ 裂纹分割结果的比较。
    在这里插入图片描述
    (a) original image (b) DeepLabv3+ © Dense-DeepLabv3+.
  • 20
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像语义分割是指对图像中的每个像素进行语义信息标注的任务。它广泛应用于自动驾驶、肝癌检测等领域。语义分割的难点主要来自物体层次、类别层次和背景层次。这意味着语义分割任务需要在复杂多变的背景下正确标记出语义信息,并区分具有高度相似外观的不同类别物体。\[1\] 在图像语义分割中,有传统方法和基于神经网络的方法。传统方法包括显式特征方法、基于概率图模型的方法和无监督学习方法。而基于神经网络的方法则隐式地建立了像素到语义的映射,不需要后期人工参与即可完成整个分割过程。\[2\] 深度学习模型在图像语义分割中起到关键作用。其中,全卷积网络(FCN)是语义分割深度学习模型的开山之作,它建立了一种用于图像语义分割的通用模型框架。FCN通过有效推理和学习,可以输入任意尺寸的图像,并生成相应尺寸的输出,实现像素到像素的映射。此外,FCN还提出了多项参数用于衡量模型的性能表现,如像素正确率、平均像素正确率、平均交叠率和平均加权交叠率。\[3\] 除了FCN,还有其他深度学习模型如PNPNet,它通过空间池模块和空间场景解析网络,利用不同区域的上下文聚合全局上下文信息的能力,为像素级预测任务提供了优越的框架。\[3\] 总之,深度学习模型在图像语义分割中发挥着重要作用,通过训练和优化参数,可以实现对图像中每个像素的语义信息标注。 #### 引用[.reference_title] - *1* *2* *3* [【论文阅读笔记】图像语义分割深度学习模型综述(张新明等)](https://blog.csdn.net/box0115/article/details/113395028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值