【JZ83 剪绳子(进阶版)】

描述

给你一根长度为 n 的绳子,请把绳子剪成整数长的 m 段( m 、 n 都是整数, n > 1 并且 m > 1 , m <= n ),每段绳子的长度记为 k[1],…,k[m] 。请问 k[1]k[2]…*k[m] 可能的最大乘积是多少?例如,当绳子的长度是 8 时,我们把它剪成长度分别为 2、3、3 的三段,此时得到的最大乘积是 18 。

由于答案过大,请对 998244353 取模。

数据范围: 2 ≤ n ≤ 1014

进阶:空间复杂度 O(1) , 时间复杂度 O(logn)

示例1

输入:4

返回值:4

说明:拆分成 2 个长度为 2 的绳子,2 * 2 = 4 

示例2

输入:5

返回值:6

说明:剪成一个长度为 2 的绳子和一个长度为 3 的绳子,答案为2*3=6 

示例3

输入:874520

返回值:908070737

方法:快速幂+快速乘法(推荐使用)

知识点1:贪心思想

贪心思想属于动态规划思想中的一种,其基本原理是找出整体当中给的每个局部子结构的最优解,并且最终将所有的这些局部最优解结合起来形成整体上的一个最优解。

知识点2:分治:

分治即“分而治之”,“分”指的是将一个大而复杂的问题划分成多个性质相同但是规模更小的子问题,子问题继续按照这样划分,直到问题可以被轻易解决;“治”指的是将子问题单独进行处理。经过分治后的子问题,需要将解进行合并才能得到原问题的解,因此整个分治过程经常用递归来实现。

思路:
在这里插入图片描述
具体做法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图示:
在这里插入图片描述
代码:

class Solution {
public:
    long long mod = 998244353;
    //快速乘法
    long long fast(long long x, long long y){
        long long res = 0;
        x %= mod;
        y %= mod;
        while(y){
            if(y & 1){
                //加法代替乘法,防止越界
                res += x;
                if(res >= mod)
                    res -= mod;
            }
            y = y >> 1;
            x = x << 1;
            if(x >= mod)
                x -= mod;
        }
        return res;
    }
    //快速幂
    long long Pow(long long x, long long y){
        long long res = 1;
        while(y){
            //可以再往上乘一个
            if(y & 1)
                res = fast(res, x);
            //叠加
            x = fast(x, x);
            //减少乘次数
            y = y >> 1;
        }
        return res;
    }
    long long cutRope(long long number) {
        //不超过3直接计算
        if(number <= 3)
            return number - 1;
        //能整除3
        if(number % 3 == 0)
            return Pow(3, number / 3);
        //最后剩余1
        else if(number % 3 == 1)
            //4*3^{n-1}
            return fast(Pow(3, number / 3 - 1), 4);
        //最后剩余2
        else
            //2*3^n
            return fast(Pow(3, number / 3), 2);
    }
};

运行时间:3ms
超过60.86% 用C++提交的代码
占用内存:540KB
超过1.85%用C++提交的代码
在这里插入图片描述
官方解释~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值