描述
给你一根长度为 n 的绳子,请把绳子剪成整数长的 m 段( m 、 n 都是整数, n > 1 并且 m > 1 , m <= n ),每段绳子的长度记为 k[1],…,k[m] 。请问 k[1]k[2]…*k[m] 可能的最大乘积是多少?例如,当绳子的长度是 8 时,我们把它剪成长度分别为 2、3、3 的三段,此时得到的最大乘积是 18 。
由于答案过大,请对 998244353 取模。
数据范围: 2 ≤ n ≤ 1014
进阶:空间复杂度 O(1) , 时间复杂度 O(logn)
示例1
输入:4
返回值:4
说明:拆分成 2 个长度为 2 的绳子,2 * 2 = 4
示例2
输入:5
返回值:6
说明:剪成一个长度为 2 的绳子和一个长度为 3 的绳子,答案为2*3=6
示例3
输入:874520
返回值:908070737
方法:快速幂+快速乘法(推荐使用)
知识点1:贪心思想
贪心思想属于动态规划思想中的一种,其基本原理是找出整体当中给的每个局部子结构的最优解,并且最终将所有的这些局部最优解结合起来形成整体上的一个最优解。
知识点2:分治:
分治即“分而治之”,“分”指的是将一个大而复杂的问题划分成多个性质相同但是规模更小的子问题,子问题继续按照这样划分,直到问题可以被轻易解决;“治”指的是将子问题单独进行处理。经过分治后的子问题,需要将解进行合并才能得到原问题的解,因此整个分治过程经常用递归来实现。
思路:
具体做法:
图示:
代码:
class Solution {
public:
long long mod = 998244353;
//快速乘法
long long fast(long long x, long long y){
long long res = 0;
x %= mod;
y %= mod;
while(y){
if(y & 1){
//加法代替乘法,防止越界
res += x;
if(res >= mod)
res -= mod;
}
y = y >> 1;
x = x << 1;
if(x >= mod)
x -= mod;
}
return res;
}
//快速幂
long long Pow(long long x, long long y){
long long res = 1;
while(y){
//可以再往上乘一个
if(y & 1)
res = fast(res, x);
//叠加
x = fast(x, x);
//减少乘次数
y = y >> 1;
}
return res;
}
long long cutRope(long long number) {
//不超过3直接计算
if(number <= 3)
return number - 1;
//能整除3
if(number % 3 == 0)
return Pow(3, number / 3);
//最后剩余1
else if(number % 3 == 1)
//4*3^{n-1}
return fast(Pow(3, number / 3 - 1), 4);
//最后剩余2
else
//2*3^n
return fast(Pow(3, number / 3), 2);
}
};
运行时间:3ms
超过60.86% 用C++提交的代码
占用内存:540KB
超过1.85%用C++提交的代码
官方解释~~~