【592. 分数加减运算】

来源:力扣(LeetCode)

描述:

给定一个表示分数加减运算的字符串 expression ,你需要返回一个字符串形式的计算结果。

这个结果应该是不可约分的分数,即最简分数。 如果最终结果是一个整数,例如 2,你需要将它转换成分数形式,其分母为 1。所以在上述例子中, 2 应该被转换为 2/1

示例 1:

输入: expression = "-1/2+1/2"
输出: "0/1"

示例 2:

输入: expression = "-1/2+1/2+1/3"
输出: "1/3"

示例 3:

输入: expression = "1/3-1/2"
输出: "-1/6"

提示:

  • 输入和输出字符串只包含 '0''9' 的数字,以及 '/', '+''-'
  • 输入和输出分数格式均为 ±分子/分母。如果输入的第一个分数或者输出的分数是正数,则 '+' 会被省略掉。
  • 输入只包含合法的最简分数,每个分数的分子分母的范围是 [1,10]。 如果分母是1,意味着这个分数实际上是一个整数。
  • 输入的分数个数范围是 [1,10]
  • 最终结果的分子与分母保证是 32 位整数范围内的有效整数。

方法:模拟

模拟
代码:

class Solution {
public:
    string fractionAddition(string expression) {
        long long denominator = 0, numerator = 1; // 分子,分母
        int index = 0, n = expression.size();
        while (index < n) {
            // 读取分子
            long long denominator1 = 0, sign = 1;
            if (expression[index] == '-' || expression[index] == '+') {
                sign = expression[index] == '-' ? -1 : 1;
                index++;
            }
            while (index < n && isdigit(expression[index])) {
                denominator1 = denominator1 * 10 + expression[index] - '0';
                index++;
            }
            denominator1 = sign * denominator1;
            index++;

            // 读取分母
            long long numerator1 = 0;
            while (index < n && isdigit(expression[index])) {
                numerator1 = numerator1 * 10 + expression[index] - '0';
                index++;
            }

            denominator = denominator * numerator1 + denominator1 * numerator;
            numerator *= numerator1;
        }
        if (denominator == 0) {
            return "0/1";
        }
        long long g = gcd(abs(denominator), numerator); // 获取最大公约数
        return to_string(denominator / g) + "/" + to_string(numerator / g);
    }
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.8 MB, 在所有 C++ 提交中击败了90.06%的用户
复杂度分析
时间复杂度: O(n + logC),其中 n 是字符串 expression 的长度, C 为化简前结果分子分母的最大值。求最大公约数需要 O(logC)。
空间复杂度: O(1)。
author:LeetCode-Solution

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值