来源:力扣(LeetCode)
描述:
给定一个整数 n
,返回 n!
结果中尾随零的数量。
提示 n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1
示例 1:
输入:n = 3
输出:0
解释:3! = 6 ,不含尾随 0
示例 2:
输入:n = 5
输出:1
解释:5! = 120 ,有一个尾随 0
示例 3:
输入:n = 0
输出:0
提示:
- 0 <= n <= 104
方法一:数学
n! 尾零的数量即为 n! 中因子 10 的个数,而 10 = 2 × 5,因此转换成求 ! 中质因子 2 的个数和质因子 5 的个数的较小值。
由于质因子 5 的个数不会大于质因子 2 的个数 ,我们可以仅考虑质因子 5 的个数。
而 n!n! 中质因子 5 的个数等于 [1, n] 的每个数的质因子 5 的个数之和,我们可以通过遍历 [1, n] 的所有 5 的倍数求出。
代码:
class Solution {
public:
int trailingZeroes(int n) {
int ans = 0;
for (int i = 5; i <= n; i += 5) {
for (int x = i; x % 5 == 0; x /= 5) {
++ans;
}
}
return ans;
}
};
执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了77.84%的用户
复杂度分析
时间复杂度: O(n)。 n! 中因子 5 的个数为 O(n) 。
空间复杂度: O(1)。
方法二:优化计算
换一个角度考虑 [1, n] 中质因子 p 的个数。
[1,n] 中 p 的倍数有 n1 = ⌊ n / p ⌋ 个,这些数至少贡献出了 n1 个质因子 p。p2 的倍数有 n2 = ⌊ n / p2 ⌋ 个,由于这些数已经是 p 的倍数了,为了不重复统计 p 的个数,我们仅考虑额外贡献的质因子个数,即这些数额外贡献了至少 n2 个质因子 p。
依此类推,[1, n] 中质因子 p 的个数为:
上式表明:
-
n 不变,p 越大,质因子个数越少,因此 [1, n] 中质因子 5 的个数不会大于质因子 2 的个数;
-
[1, n] 中质因子 5 的个数为
代码实现时,由于
因此我们可以通过不断将 n 除以 5,并累加每次除后的 n,来得到答案。
代码:
class Solution {
public:
int trailingZeroes(int n) {
int ans = 0;
while (n) {
n /= 5;
ans += n;
}
return ans;
}
};
执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了86.79%的用户
复杂度分析
时间复杂度: O(logn)。
空间复杂度: O(1)。
author:LeetCode-Solution