【172. 阶乘后的零】

来源:力扣(LeetCode)

描述:

给定一个整数 n ,返回 n! 结果中尾随零的数量。

提示 n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1

示例 1:

输入:n = 3
输出:0
解释:3! = 6 ,不含尾随 0

示例 2:

输入:n = 5
输出:1
解释:5! = 120 ,有一个尾随 0

示例 3:

输入:n = 0
输出:0

提示:

  • 0 <= n <= 104

方法一:数学

n! 尾零的数量即为 n! 中因子 10 的个数,而 10 = 2 × 5,因此转换成求 ! 中质因子 2 的个数和质因子 5 的个数的较小值。

由于质因子 5 的个数不会大于质因子 2 的个数 ,我们可以仅考虑质因子 5 的个数。

而 n!n! 中质因子 5 的个数等于 [1, n] 的每个数的质因子 5 的个数之和,我们可以通过遍历 [1, n] 的所有 5 的倍数求出。

代码:

class Solution {
public:
    int trailingZeroes(int n) {
        int ans = 0;
        for (int i = 5; i <= n; i += 5) {
            for (int x = i; x % 5 == 0; x /= 5) {
                ++ans;
            }
        }
        return ans;
    }
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了77.84%的用户
复杂度分析
时间复杂度: O(n)。 n! 中因子 5 的个数为 O(n) 。
空间复杂度: O(1)。

方法二:优化计算

换一个角度考虑 [1, n] 中质因子 p 的个数。
[1,n] 中 p 的倍数有 n1 = ⌊ n / p ⌋ 个,这些数至少贡献出了 n1 个质因子 p。p2 的倍数有 n2 = ⌊ n / p2 ⌋ 个,由于这些数已经是 p 的倍数了,为了不重复统计 p 的个数,我们仅考虑额外贡献的质因子个数,即这些数额外贡献了至少 n2 个质因子 p。
依此类推,[1, n] 中质因子 p 的个数为:

k
上式表明:

  1. n 不变,p 越大,质因子个数越少,因此 [1, n] 中质因子 5 的个数不会大于质因子 2 的个数;

  2. [1, n] 中质因子 5 的个数为

2
代码实现时,由于

在这里插入图片描述
因此我们可以通过不断将 n 除以 5,并累加每次除后的 n,来得到答案。

代码:

class Solution {
public:
    int trailingZeroes(int n) {
        int ans = 0;
        while (n) {
            n /= 5;
            ans += n;
        }
        return ans;
    }
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了86.79%的用户
复杂度分析
时间复杂度: O(logn)。
空间复杂度: O(1)。
author:LeetCode-Solution

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值