【864. 获取所有钥匙的最短路径】

来源:力扣(LeetCode)

描述:

给定一个二维网格 grid ,其中:

  • '.' 代表一个空房间

  • '#' 代表一堵

  • '@' 是起点

  • 小写字母代表钥匙

  • 大写字母代表锁

  我们从起点开始出发,一次移动是指向四个基本方向之一行走一个单位空间。我们不能在网格外面行走,也无法穿过一堵墙。如果途经一个钥匙,我们就把它捡起来。除非我们手里有对应的钥匙,否则无法通过锁。

  假设 k 为 钥匙/锁 的个数,且满足 1 <= k <= 6,字母表中的前 k 个字母在网格中都有自己对应的一个小写和一个大写字母。换言之,每个锁有唯一对应的钥匙,每个钥匙也有唯一对应的锁。另外,代表钥匙和锁的字母互为大小写并按字母顺序排列。

返回获取所有钥匙所需要的移动的最少次数。如果无法获取所有钥匙,返回 -1

示例 1:

1

输入:grid = ["@.a.#","###.#","b.A.B"]
输出:8
解释:目标是获得所有钥匙,而不是打开所有锁。

示例 2:
2

输入:grid = ["@..aA","..B#.","....b"]
输出:6

示例 3:
3

输入: grid = ["@Aa"]
输出: -1

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 30
  • grid[i][j] 只含有 ‘.’, ‘#’, ‘@’, ‘a’-‘f’ 以及 ‘A’-‘F’
  • 钥匙的数目范围是 [1, 6]
  • 每个钥匙都对应一个 不同 的字母
  • 每个钥匙正好打开一个对应的锁

方法:状态压缩 + 广度优先搜索

思路与算法

  给定一个只包含空房间、墙、起点和终点的二维网格,我们可以使用广度优先搜索的方法求出起点到终点的最短路径。这是因为在最短路径上,我们最多只会经过每个房间一次。因此从起点开始,使用队列进行广度优先搜索,当第一个搜索到某个节点的时候,我们就可以得到从起点到该节点正确的最短路。

  如果加上了钥匙和锁,我们应该如何解决问题呢?类似地,在最短路径上也不可能存在如下的情况:我们经过了某个房间两次,并且这两次我们拥有钥匙的情况是完全一致的。

  因此,我们可以用一个三元组 (x, y, mask) 表示当前的状态,其中 (x, y) 表示当前所处的位置,mask 是一个二进制数,长度恰好等于网格中钥匙的数目,mask 的第 i 个二进制位为 1,当且仅当我们已经获得了网格中的第 i 把钥匙。

  这样一来,我们就可以使用上述的状态进行广度优先搜索。初始时,我们把 (sx, sy, 0) 加入队列,其中 (sx, sy) 为起点。在搜索的过程中,我们可以向上下左右四个方向进行扩展:

  • 如果对应方向是空房间,那么 mask 的值不变;

  • 如果对应方向是第 i 把钥匙,那么将 mask 的第 i 位置为 1;

  • 如果对应方向是第 i 把锁,那么只有在 mask 的第 i 位为 1 时,才可以通过。

  当我们搜索到一个 mask 每一个二进制都为 1 的状态时,说明获取了所有钥匙,此时就可以返回最短路作为答案。

代码:

class Solution {
public:
    int shortestPathAllKeys(vector<string>& grid) {
        int m = grid.size(), n = grid[0].size();
        int sx = 0, sy = 0;
        unordered_map<char, int> key_to_idx;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == '@') {
                    sx = i;
                    sy = j;
                }
                else if (islower(grid[i][j])) {
                    if (!key_to_idx.count(grid[i][j])) {
                        int idx = key_to_idx.size();
                        key_to_idx[grid[i][j]] = idx;
                    }
                }
            }
        }

        queue<tuple<int, int, int>> q;
        vector<vector<vector<int>>> dist(m, vector<vector<int>>(n, vector<int>(1 << key_to_idx.size(), -1)));
        q.emplace(sx, sy, 0);
        dist[sx][sy][0] = 0;
        while (!q.empty()) {
            auto [x, y, mask] = q.front();
            q.pop();
            for (int i = 0; i < 4; ++i) {
                int nx = x + dirs[i][0];
                int ny = y + dirs[i][1];
                if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] != '#') {
                    if (grid[nx][ny] == '.' || grid[nx][ny] == '@') {
                        if (dist[nx][ny][mask] == -1) {
                            dist[nx][ny][mask] = dist[x][y][mask] + 1;
                            q.emplace(nx, ny, mask);
                        }
                    }
                    else if (islower(grid[nx][ny])) {
                        int idx = key_to_idx[grid[nx][ny]];
                        if (dist[nx][ny][mask | (1 << idx)] == -1) {
                            dist[nx][ny][mask | (1 << idx)] = dist[x][y][mask] + 1;
                            if ((mask | (1 << idx)) == (1 << key_to_idx.size()) - 1) {
                                return dist[nx][ny][mask | (1 << idx)];
                            }
                            q.emplace(nx, ny, mask | (1 << idx));
                        }
                    }
                    else {
                        int idx = key_to_idx[tolower(grid[nx][ny])];
                        if ((mask & (1 << idx)) && dist[nx][ny][mask] == -1) {
                            dist[nx][ny][mask] = dist[x][y][mask] + 1;
                            q.emplace(nx, ny, mask);
                        }
                    }
                }
            }
        }
        return -1;
    }

private:
    static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
};

4

复杂度分析
时间复杂度:O(mn ⋅ 2k),其中 m 和 n 是网格的行数和列数,k 是网格中钥匙的数量。
空间复杂度:O(mn ⋅ 2k)。
author:力扣官方题解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值