燧机科技的博客

专注视频监控行为分析图像识别、边缘智能ai分析以及算法定制开发

  • 博客(766)
  • 收藏
  • 关注

原创 老师上课教学质量评估分析系统

老师上课教学质量评估分析系统依托于先进的 YOLOv7 + RNN 深度学习算法,老师上课教学质量评估分析系统通过集成 AI 大模型,利用人脸识别、语音识别及图片分析等技术手段,实现对课堂教学质量的智能化评估。系统能够实时监测课堂教学活动,包括师生的动作、姿态、表情及互动情况,并通过数据分析提供多维度的教学质量评估报告,助力教学管理的优化与提升。该系统以高度可靠性、经济高效性为原则,支持实时课堂监控、学生考勤、行为识别、情感分析等功能,为教育管理者、教师及学生提供全面、客观的教学质量反馈,促进教育公平与教师

2025-06-06 22:35:41 67

原创 违规摆摊占道经营识别系统 YOLOv5

违规摆摊占道经营识别系统核心优势在于其强大的实时视频检测与分析能力,违规摆摊占道经营识别系统通过在城市关键区域部署高清摄像头精准识别违章停车的车辆、违规摆摊的摊位、乱堆的物料、占道经营的商贩以及乱挂晒的物品等。一旦系统识别到违规行为,便会立即触发告警机制。它能够通过多种方式将告警信息传递给管理人员。例如,系统可以与城市管理软件进行无缝对接,将违规行为的详细信息,包括发生的时间、地点、违规类型以及相关的图片或视频片段等,实时推送到管理人员的移动设备或电脑上。管理人员可以第一时间获取这些信息,迅速做出响应,及时

2025-06-05 09:11:54 127

原创 山体滑坡灾害监测报警系统 YOLOv11

山体滑坡灾害监测报警系统核心优势在于其精准的识别能力与高效的报警机制。山体滑坡灾害监测报警系统通过部署在关键区域的监测设备,系统可以识别出桥梁塌陷、边坡落石以及泥石流滑坡等潜在危险迹象,一旦系统识别到危险迹象,便会立即触发报警机制。报警信息会通过多种终端设备及时提醒过往车辆,与此同时,系统会将灾害事件的相关信息同步推送至监管和养护单位的值班人员。值班人员可以迅速获取准确信息,从而快速做出决策,组织专业人员赶赴现场进行应急处置,如设置警示标志、疏导交通、开展抢险救援等,有效提升应急处置效率,最大程度降低灾害损

2025-05-28 10:11:19 418

原创 考试防作弊监控系统 CNN

考试防作弊监控系统核心的 YOLOv11 + CNN 深度学习算法,考试防作弊监控系统通过在考场内安装高清摄像头,系统会实时监控考生的行为。一旦检测到考生出现使用手机、交头接耳、东张西望、站立走动、弯腰捡东西、传递东西等作弊异常行为,它会立即发出警示。系统会将这些异常行为记录下来,为后续的调查和处理提供有力的证据支持。在未来的教育发展中,考试防作弊监控系统将继续发挥其重要作用。随着技术的不断进步和升级,它将变得更加智能、更加精准,为教育公平贡献更大的力量。

2025-05-26 17:30:21 335

原创 骑电动车违规载人检测系统 YOLOX

骑电动车违规载人检测系统核心基于YOLOX深度学习算法,骑电动车违规载人检测系统对电动车在连续帧图像中的运动轨迹进行分析,一旦发现驾驶员未佩戴头盔、车辆逆行或违规载人等违章行为,系统便能瞬间做出反应,精准定位违规车辆,并通过高清摄像头抓拍下清晰的照片或视频记录,为后续的处罚流程提供了确凿无误的证据。骑电动车违规载人检测系统的广泛应用,为交警部门带来了前所未有的便利。更为重要的是,这一检测系统的存在,如同一盏明亮的警示灯,时刻提醒着市民遵守交通规则。

2025-05-23 09:45:15 318

原创 垃圾分类识别AI智能分析系统 YOLOv3

垃圾分类识别AI智能分析系统优势在于其强大的视频智能分析能力,垃圾分类识别AI智能分析系统通过在小区垃圾投放点安装的现场摄像头,对小区垃圾投放分类违规行为监督预警的视频智能分析系统。垃圾分类智能分析系统通过现场摄像头能够识别常见的垃圾分类识别如:垃圾满溢抓拍预警、人脸识别、工服识别、厨余垃圾混投未破袋识别预警、垃圾落地识别预警、人来扔垃圾语音提醒等功能,有效避免垃圾外溢对环境造成的污染,同时也提升了小区的卫生整洁度。

2025-05-21 13:23:26 287

原创 工人劳保防护用品穿戴检测系统厂家

工人劳保防护用品穿戴检测系统核心是 YOLOv8 + RNN 深度学习算法,工人劳保防护用品穿戴检测系统能够在复杂的监控画面中快速准确地识别出工作人员及其穿戴的劳保防护用品,如反光衣、工服、安全带、安全帽、口罩和护目镜等。一旦检测到工作人员未按要求穿戴劳保防护用品,系统会立即触发告警机制。告警方式包括现场语音喊话和远程通知管理人员。现场语音喊话能够第一时间提醒违规人员,促使其立即纠正行为;同时,系统会将违规信息发送至管理人员的终端设备,管理人员可以远程查看违规情况,及时采取措施。

2025-05-20 10:16:01 366

原创 公路边坡落石滑坡识别系统公司 Opencv

公路边坡落石滑坡识别系统基于YOLO11+Opencv深度学习算法,公路边坡落石滑坡识别系统一旦识别到公路灾害事件,如桥梁垮塌、边坡滑坡、泥石流等,系统会立即通过多种方式发出警报。同时,系统会向过往车辆发送语音广播,提醒司机注意安全,采取紧急避让措施,如减速慢行、驶离公路等。此外,系统还会自动将灾害事件信息同步推送至公路监管单位、养护单位的值班领导和相关人员的手机上,以便他们能够及时掌握灾害情况,迅速启动应急响应处置预案。在实际应用中,该系统已经在多条公路沿线进行了试点运行,取得了显著的成效,有效避免了可能

2025-05-16 15:19:04 368

原创 考试作弊行为监控报警系统 RNN

考试作弊行为监控报警系统基于YOLOv11 和 RNN 的深度学习算法,考试作弊行为监控报警系统实时监控考生出现使用手机、交头接耳、东张西望、站立走动、弯腰捡东西、传递东西等作弊异常行为,一旦系统判定考场内出现作弊迹象,便会立即启动告警机制。综合运用AI大模型和人工智能技术手段,实时检测考生考试过程中的异常行为,对可疑考生进行系统预警,提高疑似违纪行为发现的时效性。系统综合运用 AI 大模型和人工智能技术,为这场守护考试公平的战役提供了强大后盾。AI 大模型宛如一座知识的宝库,积累了海量的考试场景数据和作弊

2025-05-14 09:40:57 415

原创 厂区员工骑车不戴头盔检测系统

厂区员工骑车不戴头盔检测系统的核心优势在于其强大的实时监测能力,厂区员工骑车不戴头盔检测系统基于先进的 YOLO8+RNN 深度学习算法,系统能够同时对多个骑行者进行不间断的监测。当摄像头捕捉到厂区内的骑行画面时,系统便开始快速而精准地分析。一旦检测到未佩戴头盔的骑行者,系统会立即触发警报机制。这种警报机制采用多种方式,如声音警报或视觉警报,及时提醒骑行者注意安全,及时佩戴头盔。声音警报可以通过厂区内的广播系统或骑行者随身携带的设备发出,而视觉警报则可以利用智能摄像头旁边的警示灯或显示屏,以直观的方式引起骑

2025-05-12 10:40:18 248

原创 路桥灾害监测哨兵系统 Python

路桥灾害监测哨兵系统基于YOLO8+Python深度学习算法,路桥灾害监测哨兵系统能够对桥梁垮塌、路面塌陷、山体落石、泥石流等自然灾害进行实时监测与识别。当灾害发生时,系统能够在毫秒级时间内完成目标检测与风险分析。它不仅能准确识别灾害的类型,还能迅速确定灾害发生的时间和地点。通过对灾害现场图像的快速分析,系统能够初步评估灾害的风险等级。例如,对于桥梁垮塌,系统可以根据垮塌的范围和程度,判断其对交通和人员安全的威胁程度;对于泥石流,它可以根据泥石流的规模和流动速度,评估其可能造成的破坏范围。

2025-05-09 22:02:18 367

原创 车辆超速自动抓拍识别系统 YOLOv8

车辆超速自动抓拍识别系统的核心在于其深度学习算法的应用,车辆超速自动抓拍识别系统通常部署在高速公路、城市快速路以及事故多发路段等关键位置。现场安装的高清摄像头能够覆盖多条车道,实时捕捉过往车辆的图像信息。摄像头采集到的图像数据通过网络传输到后端服务器,服务器上的深度学习模型对数据进行实时分析处理。在实际运行中,系统能够快速适应不同的交通环境和天气条件。无论是白天的强光环境还是夜晚的低光照环境,系统都能保持较高的检测精度和稳定性。此外,系统还具备自我学习和优化的能力,随着数据的不断积累,模型的识别准确率会进一

2025-05-07 16:35:28 439

原创 看守所智能视频行为分析预警系统

看守所智能视频行为分析预警系统基于先进的 YOLO8+RNN 深度学习算法,看守所智能视频行为分析预警系统针对监狱复杂多变的使用环境涵盖非法闯入、倒地事件、打架事件、聚众、离岗监测、睡岗监测、离床监测、攀高监测、入厕超时、非法尾随、烟雾监测等多种场景,全方位守护监所安全。看守所智能视频行为分析预警系统对于人员的管理,离岗监测和睡岗监测功能发挥了重要作用。通过实时分析监控画面中人员的位置和状态,系统能够精准判断其是否离岗或睡岗,确保工作的严谨性和有效性。

2025-05-06 10:19:39 412

原创 园区骑车超速自动抓拍系统 YOLOv7

园区骑车超速自动抓拍系统的核心是 YOLO7+RNN 深度学习算法,园区骑车超速自动抓拍系统在园区内关键路段部署了高清摄像头,一旦检测到车辆速度超过园区规定的限速值,系统会自动触发抓拍机制,将车辆超速时间以及抓拍地点等关键信息记录下来,并生成一份详细的超速报告。这些报告会实时传输到园区交通管理部门的后台系统中,供管理人员进行后续的处理和分析。系统提供的数据支持,使得管理人员能够更有针对性地开展执法工作,对超速行为进行及时有效的处理。同时,通过对超速数据的长期积累和分析,园区交通管理部门还可以进一步优化园区的

2025-04-23 11:08:32 344

原创 桥梁边坡灾害识别报警系统 YOLOv5

桥梁边坡灾害识别报警系统基于先进的 YOLO5+RNN 深度学习算法,桥梁边坡灾害识别报警系统能够实时对桥梁边坡进行灾害监测与识别,如桥梁垮塌、路面塌陷、山体落石、泥石流等当灾害发生时,系统能够迅速识别灾害的类型、发生的时间和地点,并初步评估风险等级。这些信息将被实时传输到应急指挥中心,触发相应的应急响应处置预案。通过这种方式,大大缩短了应急处置的响应时间,为救援和抢修工作争取了宝贵的时间。这种全时段、全天候的监测能力,显著提升了灾害发现效率,为桥梁边坡的安全运行提供了有力保障。

2025-04-21 21:36:18 281

原创 消防通道堵塞堆积异常识别系统 YOLOv11

消防通道堵塞堆积异常识别系统基于YOLO11+RNN的深度学习算法,消防通道堵塞堆积异常识别系统通过先进的机器视觉分析识别技术,能够实时监控消防通道内的动态情况。它无需人工干预,一旦发现违规占用或堆放杂物等异常行为,会立即触发告警机制。系统会将警情信息,包括时间、地点、异常物体的类型和位置等详细信息,实时传输至监控管理中心。这种自动化的告警方式大大提高了监控效率,减少了因人为疏忽导致的安全隐患。在住宅小区中,系统可以有效防止车辆违规占用消防通道,确保火灾发生时消防车辆能够顺利通行。在商业写字楼和学校等人员密

2025-04-18 08:48:47 338

原创 电动车棚烟雾火焰自动识别系统 CNN

电动车棚烟雾火焰自动识别系统的核心在于其先进的深度学习算法,电动车棚烟雾火焰自动识别系统能够对车棚内的情况进行 24 小时不间断的实时监测。通过在车棚内安装多个摄像头,系统可以全方位地捕捉车棚内的图像信息。这些摄像头采集到的图像数据会实时传输到系统中,由 YOLO5+CNN 算法进行处理和分析。一旦检测到火焰或烟雾的迹象,系统会立即发出警报,并将火灾发生的位置等相关信息及时反馈给管理人员。这种实时监测和快速响应机制极大地提高了火灾预警的及时性和准确性,为火灾的早期扑救争取了宝贵的时间。

2025-04-14 22:23:52 244

原创 边坡落石灾害监测识别摄像头 YOLOX

边坡落石灾害监测识别摄像头的核心是先进的 YOLOX+RNN 深度学习算法,边坡落石灾害监测识别摄像头能够快速准确地识别如落石、裂缝、位移等。在实际应用中,摄像头安装在桥梁和公路的关键位置,对边坡进行 24 小时不间断的视频监控。它能够随时捕捉到边坡的动态变化,无论是微小的裂缝扩展,还是突发的落石滑坡,都能被系统敏锐地捕捉到。所有监控到的视频数据都会被完整记录下来,为后续的分析和追溯提供了坚实的数据基础。

2025-04-11 09:27:47 804

原创 养老院防暴力自杀预警系统 YOLOv3

养老院防暴力自杀预警系统的核心在于其先进的技术架构,养老院防暴力自杀预警系统通过在养老院内各个关键区域安装高清摄像头,系统能够实时获取养老院内的画面信息。这些摄像头分布合理,覆盖了走廊、活动室、餐厅、卧室等老人日常活动的场所,确保无死角监控。当老人出现异常动作,如突然挥拳、推搡、摔倒等可能引发打架、摔倒等危险行为时,系统能够迅速捕捉到这些动作,判断是否存在打架、倒地事件的潜在风险。一旦发现异常,系统将立即发出预警信号,通知管理人员及时赶到现场处理,为管理人员争取宝贵的处理时间,从而有效预防暴力事件的发生。

2025-04-09 11:44:48 417

原创 监狱防暴力自杀预警检测系统 Opencv

监狱防暴力自杀预警检测系统基于Opencv+CNN深度学习算法,监狱防暴力自杀预警检测系统通过在监狱内部署高清摄像头,实现了对行为的实时监控与精准分析。在的日常活动区域,系统能够敏锐地捕捉到多种异常行为。例如,当长时间静坐不动时,这可能是一个危险信号。监狱智能视频分析告警系统会自动识别这一行为模式,并迅速发出预警。管理人员接到预警后,可以及时前往现场查看情况,防止因心理问题而出现自伤、自残等危险行为。

2025-04-07 11:55:51 405

原创 桥梁塌陷边坡落石识别系统 RNN

桥梁塌陷边坡落石识别系统的核心在于其强大的智能识别能力。桥梁塌陷边坡落石识别系统通过在关键路段部署高分辨率摄像头对桥梁塌陷、边坡落石、泥石流滑坡识别智能分析其风险,确认存在危险迹象触发报警机制,提升部门应急处置效率。一旦系统识别到危险迹象,便会立即触发报警机制。报警信息会通过多种终端设备及时提醒过往车辆,与此同时,系统会将灾害事件的相关信息同步推送至监管和养护单位的值班人员。这些信息包括灾害发生的时间、地点、类型以及初步评估的风险等级等。值班人员收到推送后,能够迅速启动应急响应处置预案,组织专业人员前往现场

2025-04-02 08:52:54 437

原创 看守所人员行为分析预警系统 Python

看守所人员行为分析预警系统充分利用了看守所现场已安装的摄像机作为数据采集终端,看守所人员行为分析预警系统覆盖了监舍、洗手间、围墙、走廊、值班岗位、习艺楼以及活动场所等各个关键场景,确保无监控死角。当检测到人员出现打架斗殴、静坐不动、离床、攀高、独处、聚众、倒地等异常行为时,系统会立即触发警报,并将相关视频片段和警报信息发送给管理人员,以便及时采取措施。随着技术的不断发展和优化,该系统将在未来的看守所管理中发挥更加重要的作用,为构建更加安全、高效的监管环境奠定坚实基础。

2025-03-31 10:54:16 306

原创 教师教学质量分析评价系统 A教育大模型

教师教学质量分析评价系统基于YOLOv12+RNN的深度学习算法,教师教学质量分析评价系统精准地检测到学生是否在玩手机、举手、睡觉、交头接耳、趴桌子、行走运动等行为。同时,该模型还能够捕捉学生的情绪表情,如开心、厌恶、愤怒、悲伤、沮丧、恐惧、无表情等。这些行为和表情数据被实时采集后,会被传递到情感模型中进行进一步的深度分析。情感模型通过对学生表情的分析,能够判断学生对课堂内容的情绪反应。系统会统计学生举手的次数、玩手机的频率等行为数据。举手次数的多少可以反映学生参与课堂互动的积极性,而玩手机频率的高低则可能

2025-03-28 11:21:47 264

原创 桥梁垮塌边坡滑坡落石识别系统 YOLOv8

桥梁垮塌边坡滑坡落石识别系统的核心技术是基于YOLOv8+RNN的深度学习算法,桥梁垮塌边坡滑坡落石识别系统能够迅速识别出是否存在落石、滑坡等危险情况。一旦检测到危险迹象,系统会立即触发报警机制,将警报信息通过多种渠道APP推送等发送给相关部门和人员。这种快速响应机制极大地提升了应急处置的效率,为抢险救援争取了宝贵的时间。在降低人员成本和工作压力方面,该系统也发挥了显著作用。传统的监测方式往往需要大量的人力进行现场巡查,不仅效率低下,而且容易出现疏漏。

2025-03-26 21:22:29 288

原创 精神病院防暴力自杀预警识别系统

首先,我们提出了一种简单而高效的区域注意力模块(A2),该模块通过非常简单的方式保持较大的感受野,同时降低了注意力计算的复杂度,从而提高了速度。例如,当患者出现异常动作,如突然挥拳、推搡等可能引发打架的行为时,系统能够迅速捕捉到这些动作,并结合之前的行为模式进行分析,判断是否存在打架事件的潜在风险。首先,系统具备聚众和人数超员识别功能。因此,在相同的计算预算下,基于CNN的架构比基于注意力的架构快大约3倍,这显著限制了在YOLO系统中采用注意力机制的可能性,因为在YOLO中高效的推理速度至关重要。

2025-03-24 08:40:52 282

原创 监狱智能视频分析告警系统解决方案

监狱智能视频分析告警系统解决方案能够精准监测到静坐不动、离床、攀高、独处等行为。例如,当一名囚犯长时间静坐不动时,监狱智能视频分析告警系统解决方案会自动识别并发出预警,以便管理人员及时了解情况,防止囚犯出现自伤、自残等危险行为。在洗手间场景中,系统对入厕超时和尾随行为进行监测,一旦发现异常,立即发出警报。在围墙和走廊场景下,系统能够监测攀高、双警戒线、聚众、打架、倒地等行为,有效防止囚犯攀爬围墙企图越狱,保障监狱的安全。值班岗位的人员离岗、睡岗、缺岗行为也在系统监测范围内,确保监狱的值班制度得到有效执行。

2025-03-23 10:05:25 348

原创 充电桩消防火焰检测系统 YOLOv7

充电桩消防火焰检测系统的核心在于其强大的识别能力,充电桩消防火焰检测系统一旦检测到火焰或烟雾,系统会立即启动一系列自动响应机制。首先,自动灭火系统会被触发,根据充电桩的具体环境和安全规范,选择合适的灭火方式,如气体灭火或水喷淋系统。这种即时干预能够在火势初期有效控制火情,防止火灾进一步扩大。同时,系统会自动切断充电桩的电源,从源头上消除火灾继续蔓延的可能性。这一措施不仅保护了充电桩本身免受进一步损害,也确保了救援人员和现场人员的安全。

2025-03-19 10:06:30 331

原创 自动检测员工是否正确穿戴工服系统

自动检测员工是否正确穿戴工服系统通过在现场安装高清监控摄像头,自动检测员工是否正确穿戴工服系统一旦检测到员工未按规定穿戴工服,系统会立即触发报警机制,通过现场声光报警提醒员工纠正违规行为。同时,系统会将告警截图和视频保存到数据库,并生成详细的报表。这些数据不仅为管理者提供了实时的监控信息,还能作为后续分析的依据。系统还会将报警信号推送到相关管理人员的终端设备上,确保管理人员能够及时赶到现场进行纠正。这种即时反馈机制大大提高了安全管理的响应速度,有效预防了潜在的安全风险。

2025-03-17 10:45:24 334

原创 骑电动车不戴头盔监测报警系统 YOLOv5

骑电动车不戴头盔监测报警系统利用先进的 YOLOv5+CNN 深度学习算法,骑电动车不戴头盔监测报警系统通过安装在关键位置的高清摄像头对骑行电动车和摩托车的行为进行实时监测与分析。一旦检测到骑车者未佩戴安全头盔进入监测范围,系统会立即自动识别并抓拍当时的图像,同时将图像传输到管理中心。在管理中心,系统会输出报警信号,提醒管理人员及时处理。此外,系统还可以与现场的语音告警设备联动,对未佩戴头盔的骑行者进行即时语音提醒。这种实时预警机制不仅能够有效震慑违规行为,还能及时提醒骑行者注意安全,从而降低交通事故的发生

2025-03-12 21:23:10 433

原创 课堂教学质量评价分析系统 AI+教育

课堂教学质量评价分析系统的核心技术基于YOLOv11和CNN算法,课堂教学质量评价分析系统检测到的行为数据(如玩手机、举手、睡觉、交头接耳、趴桌子、行走运动)和表情数据(如开心、厌恶、愤怒、悲伤、沮丧、恐惧、无表情)会被传递到情感模型进行进一步分析。同时,系统还会结合视线跟踪技术,将学生的视线聚焦点与当前教学知识点进行关联,从而更精准地评估学生对知识的接受程度。采集到的数据通过配套的后台大数据业务平台进行处理和分析,通过对这些模块的交叉分析,生成详细的课堂分析报告。

2025-03-10 21:01:08 363

原创 养老院视频监控智能解决方案 yolov11

养老院视频监控智能解决方案基于YOLOv11+RNN,养老院视频监控智能解决方案通过现场监控摄像机实时采集视频数据,并利用YOLOv11+RNN算法对视频内容进行分析。一旦检测到老人摔倒、打架或被虐待等异常行为,系统会立即触发警报,并将相关数据上传至养老监控管理平台。同时,系统会通过小程序向老人的家人或监护人员推送告警信息,确保相关人员能够及时响应。所有监控数据会被存储在云端或本地服务器中,方便管理人员随时回看和分析。通过对历史数据的深度挖掘,系统可以发现潜在的安全隐患,优化养老院的管理流程。

2025-03-07 10:44:37 403

原创 监狱行为智能分析预警系统 CNN

监狱行为智能分析预警系统基于先进的 YOLOv11+RNN 深度学习算法,监狱行为智能分析预警系统充分利用监狱现场已安装的摄像机,实现对监舍、洗手间、围墙、走廊、值班岗位、习艺楼以及活动场所等各个场景下人员行为的 7×24 小时实时监测与预警。在监舍内,该系统能够精准监测到静坐不动、离床、攀高、独处等行为。例如,当一名囚犯长时间静坐不动时,系统会自动识别并发出预警,以便管理人员及时了解情况,防止囚犯出现自伤、自残等危险行为。

2025-03-03 09:03:43 425

原创 乱扔垃圾行为检测系统 YOLOX

乱扔垃圾行为检测系统基于YOLOX+RNN的深度学习算法,乱扔垃圾行为检测系统通过前端摄像头一旦检测到乱扔垃圾行为,系统会立即发出警报,通知相关人员及时处理,从而起到保障社会卫生的作用。本系统通过安装在垃圾桶周围的摄像头,实时监测垃圾桶内的垃圾量。当垃圾桶内的垃圾达到一定高度,即将溢出时,系统会自动发出警报,并将相关信息发送给环卫工人,以便他们及时清理。这不仅提高了传统人工巡查的工作效率,还能有效避免垃圾桶溢出导致的垃圾乱堆乱扔现象,进一步改善城市环境卫生状况。

2025-02-28 20:16:58 414

原创 山体落石滑坡识别系统 落石泥石流监控摄像机

山体落石滑坡识别系统 落石泥石流监控摄像机基于YOLOX+RNN的深度学习算法,山体落石滑坡识别系统 落石泥石流监控摄像机通过安装在山区公路沿线的监控摄像机来实现对山体的实时监测。这些摄像机分布在关键位置,如山体易滑坡区域、桥梁附近等,能够24小时不间断地捕捉山体的动态变化。一旦摄像机捕捉到山体出现裂缝、落石松动、泥石流迹象等异常情况,立即发出警报,大大提高了监测效率和预警准确性。

2025-02-28 20:10:47 391

原创 明厨亮灶视频分析抓拍识别系统 YOLOv3

明厨亮灶视频分析抓拍识别系统的核心是 YOLOX+RNN 深度学习算法,明厨亮灶视频分析抓拍识别系统通过部署在后厨的关键位置的监控摄像机能够快速识别出后厨人员是否正确佩戴厨师帽、口罩、工作服等,并且能够检测到抽烟、玩手机等违规行为,一旦检测到违规行为或异常情况,立即通过软件平台发出报警提醒,通知管理人员及时处理。后厨人员的穿戴规范是食品安全的重要保障。该系统能够自动识别后厨人员是否按照规范要求佩戴厨师帽、口罩和工作服。如果发现有人员未正确穿戴,系统会立即发出报警提醒,确保后厨人员始终保持良好的卫生习惯。

2025-02-24 14:18:40 320

原创 人员违章操作行为安全检查系统 Opencv

人员违章操作行为安全检查系统基于YOLOX+RNN 深度学习算法,人员违章操作行为安全检查系统通过安装在生产现场的监控摄像机可以实时检测人员的拿取动作、运动轨迹、插装位置以及动作顺序等细节信息是否存在漏放、漏拿、漏打等违规行为。一旦发现这些行为,系统将立即发出警报,提醒管理人员及时采取措施。同时,系统还可以根据预设的安全规则,自动停止相关机器的运行,以避免因违章操作而导致的进一步损失和危险。

2025-02-19 09:50:23 350

原创 高速道路交通违规事件识别检测系统 RNN

高速道路交通违规事件识别检测系统基于 YOLOX+RNN 的深度学习算法,高速道路交通违规事件识别检测系统通过现场摄像机可以高效地识别出多种交通违规行为,如机动车违停、车辆拥堵、车辆逆停、车祸、车辆侧翻和机动车违停占道等。高速道路交通违规事件识别检测系统不仅是一种先进的技术手段,更是创新行业智能监督管理方式的重要体现。它改变了以往交通管理中依赖人工监控的模式,实现了平台远程监控从“人为监控”向“智能监控”的转变。

2025-02-17 20:05:13 361

原创 监狱视频监控智能预警系统 Python

监狱视频监控智能预警系统基于先进的 YOLOX 深度学习算法,监狱视频监控智能预警系统通过现场监控摄像机对监狱内的实时画面进行精准分析。系统具备聚众、人数超员识别功能。在监狱的某些区域,人员数量过多可能会引发混乱,系统通过实时统计和分析人员数量,一旦发现超出设定阈值,便会发出警报。离岗监测功能可以确保监狱工作人员在岗状态,防止因离岗导致的安全隐患。攀高监测则能够防止囚犯通过攀爬等方式逃脱或制造危险。睡岗监测和离床监测功能则分别针对监狱工作人员和囚犯的不当行为进行监督,确保监狱秩序的正常运行。

2025-02-14 09:38:28 351

原创 非车间人员进入识别监控系统 YOLOv8

非车间人员进入识别监控系统的核心是 YOLO8 深度学习算法,非车间人员进入识别监控系统通过现场监控摄像机覆盖了车间及周边的各个关键区域,当系统检测到非车间人员进入时,会迅速触发告警流程。首先,系统会在现场通过语音提醒装置发出语音警告,要求其立即离开。同时,系统会自动抓拍违规人员的图像,并将告警信息实时推送至后台监控中心。此外,系统还具备手机端提醒功能。通过与管理人员的手机端应用程序连接,一旦发生告警事件,管理人员会立即收到推送通知,从而实现快速响应和处理。

2025-02-12 18:36:34 438

原创 社区垃圾分类识别AI算法盒 YOLOv7

社区垃圾分类识别AI算法盒在社区垃圾投放站安装后,社区垃圾分类识别AI算法盒便能实时监测垃圾投放情况。当居民前来扔垃圾时,算法盒一旦检测到错误投放的垃圾,例如将可回收物扔进了其他垃圾桶,或者厨余垃圾没有破袋直接扔进垃圾桶等情况,它会立即启动语音提醒功能,清晰地告知居民正确的投放方式,引导居民进行纠正。这种及时的提醒和纠正机制,不仅能够帮助居民养成良好的垃圾分类习惯,还能有效减少垃圾混投现象,提高垃圾分类的准确率。

2025-02-10 09:26:01 452

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除