视频监控智能分析银行系统通过安装在银行的营业厅、取款机处或者银行柜台以及银行门口等区域的各大品牌的终端监控摄像头,视频监控智能分析在系统后台软件上的视频画面内设置智能分析区域,通过上面的操作实现对银行的7*24小时的智能视频监控分析报警,对进出人员行为进行智能分析。如果监控画面当有异常行为发生时,系统可以在100ms内自主分析并自动报警,通知监控室的值班人员。
YOLOv8现在可以接受输入很多,如下表所示。包括图像、URL、PIL图像、OpenCV、NumPy数组、Torch张量、CSV文件、视频、目录、通配符、YouTube视频和视频流。表格✅指示了每个输入源是否可以在流模式下使用,并给出了每个输入源使用流模式的示例参数
视频监控智能分析系统可以通过安装在银行的ATM取款机处安装人脸抓拍设备和监控摄像机,系统通过对进入监控范围内的取款人的人脸智能自动抓拍,通过无线网络),将各大品牌的监控终端设备抓拍到的视频流传输到监控中心实时分析识别,如果检测到有异常情况,可以及时预警并且将预警信息发送到管理人员手机上。
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
# Open the video file
video_path = "path/to/your/video/file.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
视频监控智能分析系统应用于银行或者金库重地等重要场所,以及对值班室进行人员的脱岗实时检测,当系统检测到值班室内处处于没有人的状态超过系统后台设定时间,视频监控智能分析系统在指挥中心报警,并且可以及时有效防止值班人员脱岗造成安全隐患短信联动分级报警为智能视监控系统的特色功能。系统可以将报警事件的发生的情况在第一时间将文字短信或现场图片发给后台以及系统设定的负责人手机上。