自动识别安全帽智能监控算法 opencv

自动识别安全帽智能监控系统软件依据智能化视频分析,全自动对视频图像信息内容进行剖析辨别,不用人工控制,自动识别安全帽智能监控能对工程施工工作环境进行全天监控,当监控到工作员未佩戴安全帽未穿工作服装进到时,马上预警信息,有效的帮助管理人员工作上,并大范畴性降低出错和少报的情况,减少人力资源管理管控的成本费用。

OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV拥有包括300多个C函数的跨平台的中、高层API。它不依赖于其它的外部库――尽管也可以使用某些外部库。

丢垃圾识别预警信号系统对地域进行及时检验,不用人工控制,一旦监测到有的人未佩戴安全帽或者乱扔垃圾时,马上进行预警信号,告知监控管理处,提示相关工作人员马上处理。此外将预警信号截屏和视频储存到数据库查询造成表格,可根据时间范围对预警信号和预警信息截屏,视频进行查看播放,方便快捷进行后运动轨迹回朔,快速查询责任者。

· OpenCV包含如下几个部分∶
	. Cxcore:一些基本函数(各种数据类型的基本运算等)。
	. Cv∶图像处理和计算机视觉功能(图像处理,结构分析,运动分析,物体跟踪,
模式识别,摄像机定标)
	· MI:机器学习模块,目前内容主要为分类器。
	. Cvaux:一些实验性的函数(ViewMorphing,三维跟踪,PCA,HMM)
	. Highgui:用户交互部分,(GUI,图象视频l/O,系统调用函数)


import numpy as np
import cv2

cap = cv2.VideoCapture(0)
while(True):
	#—帧帧读取摄像头内容
	ret,frame = cap.read()
	#显示转换后的颜色到窗口中
	cv2.imshow('frame', frame)
	if cv2.waitKey(1) & 0xFF == ord('q'): # 按 q键退出
		break
		
#释放capture资源
cap.release()
cv2.destroyAllwindows ()

在并没有人工控制的情形下,传动带偏移监控系统软件将在并没有人工控制的情形下即时监控实际操作范围的传动带。一旦监控皮带运作偏移,马上通告监控管理处,控管理中心,提示有关工作人员妥善处理。与此同时,将警报截屏和视频储存到数据库系统中,以产生一个汇报。您可以依据时间范围查看警报纪录和警报截屏,并播放视频视频,便于于过后回朔。高处投掷监控对系统多层建筑开展即时监控。假如看到有个人从高处投掷物件,应该马上开展拍摄和警示,并通告安全性管理者妥善处理。衣着防护衣的监控标识系统设计即时监控特别要求的工作中地区。当有些人未按要求穿上防护衣时,应该马上开启警报,提示有关工作人员妥善处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值