学校食堂明厨亮灶监控系统通过卷积神经网络学习与图像识别技术,学校食堂明厨亮灶监控系统将对现场监控画面进行24小时实时分析,如:厨房出现老鼠狗猫、厨师未戴口罩、厨师未戴厨师帽、厨师服穿戴识别、抽烟识别、玩手机识别,同时实时抓拍相关情况,全程记录留痕,提升监管效率,落实工作责任。
现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。
Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。
分类分支依然采用 BCE Loss
回归分支需要和 Distribution Focal Loss 中提出的积分形式表示法绑定,因此使用了 Distribution Focal Loss, 同时还使用了 CIoU Loss。3 个 Loss 采用一定权重比例加权即可。
随着社会的发展和人民生活水平的提高,校园食品安全越来越被重视。全面提升校园食品安全监管力度,创新探索“互联网+”学校食堂监管新手段,建立和学校关于“明厨亮灶”的视频监控信息连接,全面地提供校园厨房的视频信息,学校食堂明厨亮灶监控系统并且对各种事件进行记录。
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
# Open the video file
video_path = "path/to/your/video/file.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
学校食堂明厨亮灶监控系统利用食堂已有监控对学校食堂厨房开展全天候7*24小时不间断监管分析。校园食堂明厨亮灶智能视频监控系统,针对厨师不穿厨师服、不戴厨师帽口罩、陌生人员进入后厨、厨师工作时间玩手机打电话、后厨出现猫狗老鼠等异常行为现象,系统会自动识别抓拍报警。