楼道堆积物视觉识别监控系统采用了AI神经网络和深度学习算法,楼道堆积物视觉识别监控系统通过摄像头实时监测楼道的情况,通过图像处理、物体识别和目标跟踪算法,系统能够精确地识别楼道通道是否被堆积物阻塞。楼道堆积物视觉识别监控系统检测到堆积物的存在,立刻通过告警信息提醒相关人员及时处理。对潜在安全隐患进行自动预警信息,确保消防作业的效率,保障消防安全顺利进行。同时,为了确保管理的高效性和及时性,系统还会将告警信息的屏幕截图推送给相关管理者,以便更好地掌握现场情况并采取适当的行动。
Python是一门解释性脚本语言,解释性语言:解释型语言,是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。编译性语言:编译型语言写的程序执行之前,需要一个专门的编译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了(exe文件),因为翻译只做了一次,运行时不需要翻译,所以编译型语言的程序执行效率一般来说较高。
脚本语言:脚本语言又被称为扩建的语言,或者动态语言,是一种编程语言,用来控制软件应用程序,脚本通常以文本(如ASCII)保存,只在被调用时进行解释或编译。所以一般使用Python来实现特定功能而不是较为复杂的后端。
安全出口便是生命通道,它是快速扑灭火灾事故、抢救业主生命安全、降低火灾危害的主要前提条件,不能随便占据,必须时刻畅通无阻。楼道是建筑物中重要的安全通道,但经常因为堆积物而造成通行困难和安全隐患。为了解决这一问题,基于AI神经网络和深度学习算法的楼道堆积物视觉识别监控系统应运而生。楼道堆积物视觉识别监控系统通过安装在楼道中的监控摄像头实时监测楼道安全通道的情况。当监测到安全出口阻塞、被占据时,立刻告警信息及时纠正,合理有效避免意外事故事件的发生。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
楼道堆积物视觉识别监控系统通过充分的数据训练和算法优化,楼道堆积物视觉识别监控系统具备较高的检测准确性和实时性,能够适应不同楼道环境的监测需求。同时,系统完善的告警机制和信息推送功能,能够及时提醒相关人员并通知管理者,确保问题得到及时解决。楼道堆积物视觉识别监控系统的应用范围广泛,适用于各类建筑物楼道。传统上,对楼道堆积物的检测主要依赖人工巡视,存在人为疏忽和漏检的问题。而基于AI神经网络和深度学习算法的楼道堆积物视觉识别监控系统能够自动实现对楼道安全通道的监测和识别,大大提高了管理的效率和准确性。