读了几篇论文,主要是关于李纯明前辈(个人网址:http://www.engr.uconn.edu/~cmli/)的水平集方法,也对CV模型、Snakes、测地方法看了一些。同一系列的论文看起来很省力,只是在fitting energy function和特征选择上有一些差异。选择这个方法进行研究是因为看了马师兄的论文采用的是水平集的方法,想用这个作为一个入门,看了一月有余,想结束这个方法,然而着实是眼高手低了。搞到了CV以及李前辈11年论文的代码,却不知如何用来分割心房,代码分割的是好多目标,因为是根据灰度和梯度来分割的,心房和心室的灰度相差不多,想分割出来这个参数的调整和特征的选取应该是很重要的。马师兄的方法在分割大脑时使用了三个特征: the volume-scalable intensity mean value、 the volume-scalable interquartile range 、 the weighted intensity variance ,在今年分割心房时也是用的这三个特征,师兄使用的是3D Slicer中的Model Maker模块实现的模型,奈何自己现在还没搞懂这个软件,试着在MATLAB上实现分割一下2D的数据吧。因为师兄的方法也是基于CV模型的,所以就在CV的代码上改进一下,试试看如何加入这几个特征,可能想法不成熟,但是还是要试一下的,如果成功了,下一步就看一下MSL模型,也许这两个方法可以配合使用。
水平集方法使用迭代求解泛函的方式计算演化曲线,一个水平集函数可以对应多目标,可以很好的适应多拓扑结构