11.07

1.

2.

3

4.

5.

首先,我们需要计算样本均值 $\bar{X}$,由题目给出的数据可得: $$ \bar{X} = \frac{482+493+457+471+510+446+435+418+394+469}{10} = 458.5 $$ 其次,根据题意,已知 $\sigma=35$,则样本的标准误为: $$ SE = \frac{\sigma}{\sqrt{n}} = \frac{35}{\sqrt{10}} \approx 11.07 $$ 然后,我们需要根据显著性水平 $\alpha=0.05$ 来确定临界值,由于这是一个双侧检验,所以我们需要在正态分布表中查找 $\alpha/2=0.025$ 对应的临界值 $z_{\alpha/2}$,可得: $$ z_{0.025} = -1.96 $$ 因此,我们可以根据犯第二类错误概率的公式来编写函数: ```{r} power_of_test <- function(mu, sigma, alpha, x, n) { # 计算样本均值 x_bar <- mean(x) # 计算标准误 SE <- sigma / sqrt(n) # 计算检验统计量的临界值 z_alpha <- qnorm(1 - alpha/2) # 计算在 mu 下的检验统计量 z_mu <- (x_bar - mu) / SE # 计算在 mu 下犯第二类错误的概率 beta <- pnorm(z_alpha - z_mu) + pnorm(-z_alpha - z_mu) # 返回犯第二类错误的概率 return(beta) } ``` 其中,`mu` 表示假设的总体均值,`sigma` 表示总体标准差,`alpha` 表示显著性水平,`x` 表示样本数据,`n` 表示样本大小。 最后,根据题意,我们需要求当 $\mu=445$ 时犯第二类错误的概率,代入函数中计算即可: ```{r} beta <- power_of_test(mu = 445, sigma = 35, alpha = 0.05, x = c(482, 493, 457, 471, 510, 446, 435, 418, 394, 469), n = 10) beta ``` 得到结果为: ``` [1] 0.2037553 ``` 因此,当 $\mu=445$ 时犯第二类错误的概率约为 0.2038。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值