空间复用MIMO系统的信号检测
线性信号检测
ZF 算法
对接收到得信号
y
=
h
x
+
n
y=hx+n
y=hx+n乘以加权矩阵W:
z
=
W
y
z=Wy
z=Wy
ZF准则:假设发送天线K根
,接收天线L根
,则加权矩阵
W
=
{
H
−
1
K
=
L
(
H
H
H
)
−
1
H
H
K
<
L
W=\left\{\begin{matrix} H^{-1} & K=L\\ {(H^HH)}^{-1}H^H&K<L \end{matrix}\right.
W={H−1(HHH)−1HHK=LK<L
则:
z
=
W
y
=
x
+
W
n
z=Wy=x+Wn
z=Wy=x+Wn
MMSE 算法
最小均方误差准则是为了最小化:
M
S
E
=
E
[
∣
∣
x
−
W
y
∣
∣
2
]
MSE=E[||x-Wy||^2]
MSE=E[∣∣x−Wy∣∣2]
加权矩阵:
W
=
(
H
H
H
+
N
0
I
)
−
1
H
H
W=(H^HH+N_0I)^{-1}H^H
W=(HHH+N0I)−1HH
则:
z
=
W
y
=
x
+
W
n
z=Wy=x+Wn
z=Wy=x+Wn
MMSE和ZF的BER性能与 γ 0 − ( L − K + 1 ) \gamma_0^{-(L-K+1)} γ0−(L−K+1)成比例
在MIMO系统中线性检测的分集增益为L-K+1
ML信号检测
目标函数最小化:
μ
=
∣
∣
y
−
H
c
∣
∣
2
\mu=||y-Hc||^2
μ=∣∣y−Hc∣∣2
c
:所有可能的发送信号,2x2MIMO QPSK调制为例;c有16种情况;H
信道矩阵;y
随机生成的二进制序列,QPSK调制后经过信道到达接收端的信号
高SNR下,MLD的BER渐进边界大致为:
P
e
≈
β
(
1
4
γ
0
)
L
C
2
L
−
1
L
P_e\approx\beta(\frac{1}{4\gamma_0})^LC_{2L-1}^L
Pe≈β(4γ01)LC2L−1L