基于Ansys Workbench的网格无关性验证

在进行有限元应力结果评估时,通常要进行网格无关性验证。这个主要和有限元的计算原理有关,即有限元方法是通过有限个单元将连续体离散化进行数值求解,因此网格的数量也决定着结果的求解精度。

一般来说,网格划分的越密,求解的结果精度也就越高。但是随着网格数量的不断增加会导致计算成本的增大,而且当网格达到一定数量后,计算精度的提高也不再很明显了,因此在实际工程应用中需要进行网格无关性验证。其实就是验证计算结果对于网格密度变化的敏感程度,当网格数量增加后,如果计算结果的变化在允许范围内,我们就可以认为此时网格的数量变化对结果的影响可以忽略不计。

下面通过一个小案例介绍一下基于Ansys Workbench的网格无关性验证。

图示是一个带孔薄板,左端固定约束,右端受到一个水平向右的力作用,大小为10N。通过求解计算带孔薄板的应力分布。计算模型见图1所示。

图片

图1 计算模型

模型进行自动网格划分后进行求解,在后处理结果中插入等效应力结果进行查看。见图2所示。

图片

图2 自动划分的网格与求解结果

该带孔薄板在进行拉伸时,孔周围会出现应力集中的情况,因此需要对孔附近的应力结果进行无关性验证。具体操作是在等效应力结果下插入”convergence“,设置允许结果的最大变化量为5%,然后在求解详细中输入自适应网格加密的最大加密次数和加密深度,再次进行求解。

软件会自动在需要进行细化的区域重新划分网格,计算出对应的等效应力,并与上一次的结果进行比较,直到结果差值满足设定的要求。如表1所示,模型在原来计算结果的基础上再次计算了3次后得到应力结果为1.291MPa,与前一次计算结果的差值为1.8382%,满足设定要求。

表1 收敛数据

图片

从图3中也可以看出最后一次计算结果的曲线斜率已经很平缓了,应力结果随着网格加密逐步收敛。

图片

图3 收敛历史

图4是模型的网格做了以上3次调整后的最终结果,从图中可以观察到圆孔附近的网格比原始网格加密了许多,应力结果随之也发生了变动。

图片

图4 最终结果

以上便是基于Ansys Workbench的网格无关性验证过程,需要注意的是在进行网格无关性验证时,应该避开应力奇异位置,因为在应力奇异处,随着网格的不断加密,应力值也会无限增大,从而无法得到一个收敛结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值