2016计蒜之道复赛 微信钱包付款
一、题意:
给定n(0≤n≤1010000),求a,,b,c使得a+b+c=n,并且f(a)=f(b)=f(c),f(n)定义为n的各数位的和,例如:f(123)=1+2+3=6。若不存在答案输出-1.
二、解题思路
可以证明若n%3=0等价于存在满足题意a,b,c。证明如下:
(1)必要性
依题意,若a+b+c=n ,对3取模有,[f(a)+f(b)+f(c) ]%3=n%3,因为f(a)=f(b)=f(c)所以n%3=0。
(2)充分性
一定可以构造出,a+b+c=n&&f(a)=f(b)=f(c),构造方法如下:
因为f(n)%3=0,将所有n的数位看作,以1为单位向f(n)贡献,则把f(n)分成均等的三分即可,反映在n这个数本身上即:取n的前k位以及k+1位的一部分,其他位为0,得到数a,在剩余的部分中再按此方法取b,剩下的即为c。例如:126可以分成120+3+3。
三、代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
#include<queue>
#include<vector>
#include<list>
//#pragma comment(linker,"/STACK:1024000000,1024000000")
using namespace std;
#define INF 0x3f3f3f3f
int n;
char str[10005];
int sum[10005];
int main()
{
while(gets(str)!=NULL)
{
int n=strlen(str);
for(int i=0;str[i];i++)
{
if(i>=1)sum[i]=sum[i-1]+str[i]-'0';
else sum[i]=str[i]-'0';
}
sum[n]=sum[n-1];
if(sum[n]==0)
{
printf("0 0 0\n");
continue;
}
if(sum[n-1]%3)
{
puts("-1");
}
else
{
int p=upper_bound(sum,sum+n,sum[n]/3)-sum;
int p2=upper_bound(sum,sum+n,2*sum[n]/3)-sum;
int p3=upper_bound(sum,sum+n,3*sum[n]/3)-sum;
for(int i=0;i<n;i++)
{
int tmp;
if(i<p) printf("%c",str[i]);
else if(i==p) printf("%d",tmp=sum[n]/3-sum[p-1]),str[i]-=tmp;
else printf("%d",0);
}
printf(" ");
for(int i=p;i<n;i++)
{
int tmp;
if(i==p) printf("%d",tmp=min(sum[p]-sum[n]/3,sum[n]/3)),str[i]-=tmp;
else if(i<p2) printf("%c",str[i]);
else if(i==p2) printf("%d",tmp=2*sum[n]/3-sum[p2-1]),str[i]-=tmp;
else printf("%d",0);
}
printf(" ");
for(int i=p2;i<n;i++)
{
int tmp;
if(i==p2) printf("%d",tmp=min(sum[p2]-2*sum[n]/3,sum[n]/3)),str[i]-=tmp;
else if(i<p3) printf("%c",str[i]);
else if(i==p3) printf("%d",tmp=3*sum[n]/3-sum[p3-1]),str[i]-=tmp;
else printf("%d",0);
}
printf("\n");
}
}
return 0;
}