剑指offer面试题06:重建二叉树

题目:输入某二叉树的前序遍历和中序遍历的结果,请重新建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},重建二叉树并输出它的头结点。


分析:

1、前序遍历中的第一个数据一定是根节点,以上面为例,1为根节点,然后在中序遍历中找到该节点,1左边的数据构成其左子树,右边的数据构成其右子树。

2、可以利用递归的思想,分别计算第一步中得到的左子树、右子树的左右子树。


补充总结:

1、前序遍历结果+中序遍历结果   可以重建二叉树

      后序遍历结果+中序遍历结果   可以重建二叉树

      前序遍历结果+后续遍历结果   不能重建二叉树

2、利用前序遍历结果+中序遍历结果可以直接得到后序遍历结果,不需要重建二叉树。以题目输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}为例

      前序遍历序列中的第一个一定是根节点,那么它在后续遍历中一定是放在最后一位的,前序遍历第一个得到数据为1,所以得到后序遍历为{1的左子树,1的右子树,1},由中序遍历结果知道结点4,7,2均为左子树节点,而5,3,8,6为右子树节点。前序遍历中第二个节点为2,所以它是以1为根节点的左子树的根节点,中序遍历结果显示4和7均在2的前面,并且2的后面就是1,说明4和7属于2的左子树,2没有右子树,此时,得到{2的左子树,2的右子树(空),2,1的右子树,1},同理分析1的右子树,前序遍历序列中除了1和1左子树包含的节点外,右子树第一个出现的是数据是3,所以3是结点1的右子树的根节点,中序遍历中,3将1的右子树分成了两部分,3前面的为5,所以5为3的左孩子,8,6在3的右边,所以属于3的右子树,此时得到{2的左子树,2的右子树(空),2,3的左子树,3的右子树,3,1},同理分析2、3的左右子树,最终得到该树的后序结果为{7,4,2,5,8,6,3,1}


我的代码:

import java.util.*;
/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
         if((pre.length != in.length) || pre.length == 0  || in.length == 0){
                return null;
            }
              
            return constructBinaryTree(pre,in,0,pre.length-1,0,in.length-1);
    }
      
    public TreeNode constructBinaryTree(int[] pre,int[] in, int pre_start,int pre_end,int in_start,int in_end){
            if(pre_start<=pre_end && in_start <=in_end){
                int rootValue = pre[pre_start];
                pre_start++;
                TreeNode root = new TreeNode(rootValue);
                int left = in_start;
                while(in[left] != rootValue){
                    left++;
                }
                root.left = constructBinaryTree(pre,in,pre_start,pre_start+(left-in_start)-1,in_start,left-1);
                root.right = constructBinaryTree(pre,in,pre_start+(left-in_start),pre_end,left+1,in_end);
                return root;
            }
            return null;
        }
 
     
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值