题目:输入某二叉树的前序遍历和中序遍历的结果,请重新建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},重建二叉树并输出它的头结点。
分析:
1、前序遍历中的第一个数据一定是根节点,以上面为例,1为根节点,然后在中序遍历中找到该节点,1左边的数据构成其左子树,右边的数据构成其右子树。
2、可以利用递归的思想,分别计算第一步中得到的左子树、右子树的左右子树。
补充总结:
1、前序遍历结果+中序遍历结果 可以重建二叉树
后序遍历结果+中序遍历结果 可以重建二叉树
前序遍历结果+后续遍历结果 不能重建二叉树
2、利用前序遍历结果+中序遍历结果可以直接得到后序遍历结果,不需要重建二叉树。以题目输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}为例
前序遍历序列中的第一个一定是根节点,那么它在后续遍历中一定是放在最后一位的,前序遍历第一个得到数据为1,所以得到后序遍历为{1的左子树,1的右子树,1},由中序遍历结果知道结点4,7,2均为左子树节点,而5,3,8,6为右子树节点。前序遍历中第二个节点为2,所以它是以1为根节点的左子树的根节点,中序遍历结果显示4和7均在2的前面,并且2的后面就是1,说明4和7属于2的左子树,2没有右子树,此时,得到{2的左子树,2的右子树(空),2,1的右子树,1},同理分析1的右子树,前序遍历序列中除了1和1左子树包含的节点外,右子树第一个出现的是数据是3,所以3是结点1的右子树的根节点,中序遍历中,3将1的右子树分成了两部分,3前面的为5,所以5为3的左孩子,8,6在3的右边,所以属于3的右子树,此时得到{2的左子树,2的右子树(空),2,3的左子树,3的右子树,3,1},同理分析2、3的左右子树,最终得到该树的后序结果为{7,4,2,5,8,6,3,1}
我的代码:
import java.util.*;
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if((pre.length != in.length) || pre.length == 0 || in.length == 0){
return null;
}
return constructBinaryTree(pre,in,0,pre.length-1,0,in.length-1);
}
public TreeNode constructBinaryTree(int[] pre,int[] in, int pre_start,int pre_end,int in_start,int in_end){
if(pre_start<=pre_end && in_start <=in_end){
int rootValue = pre[pre_start];
pre_start++;
TreeNode root = new TreeNode(rootValue);
int left = in_start;
while(in[left] != rootValue){
left++;
}
root.left = constructBinaryTree(pre,in,pre_start,pre_start+(left-in_start)-1,in_start,left-1);
root.right = constructBinaryTree(pre,in,pre_start+(left-in_start),pre_end,left+1,in_end);
return root;
}
return null;
}
}