Rabbit Kingdom HDU - 4777 (离线处理+树状数组)

Rabbit Kingdom

 HDU - 4777 

题意:给定n个数a[i] ( 1=< i <=n) 现在给定m个询问,每个询问一个区间[l,r],问该区间有多少个数与其它所有的数互素。

1 =< n,m,a[i] <= 200000

思路:对于每个数a[i] 处理后可以得到一个区间[L,R]在这个区间里面,a[i]对所有包含i的[L,R]的子区间都能贡献一个结果。每个a[i] 得到一个三元组[L,i,R],每个询问[l,r]的结果其实就是问有多少个三元组满足 L <= l && l <= i && r >= i && r <= R;

考虑将询问按照右端点由小到大排序:考虑将 < r 的三元组信息更新过来,可是更新什么数据呢?考虑下面的情况。

对一个询问 [l,r] 和 三元组[L,i,R]的关系可能为:

L  l   r

l  L   r

L  i   l   r  

L  l   i   r        ***

l  L   i   r

只要R < r 都不用再考虑了,这样的三元组肯定不会再贡献结果。

综上看来只有***是能对结果更新的。

所以:

三元组的L来了暂时不必更新,因为没用啊,对结果无影响。

三元组的i来了我让i的数量在树状数组加1,L加1

三元组的R来了就消除对应的更新。

这样一来,每个询问的结果就应当是 [l,r]区间的i的数目 - (l,r]区间的L的数目啦。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+777;
const ll mod = 998244353LL;
vector <int> vc[maxn];
bitset <maxn> bt;
struct node{
   int l,m,r,x,t;
   node(){}
   node(int l,int m,int r,int x,int t):l(l),m(m),r(r),x(x),t(t){}
   bool operator < (const node nd) const{
       if(x != nd.x) return x < nd.x;
       return t < nd.t;
   }
}R[maxn],RC[maxn*2],q[maxn];
int a[maxn],last[maxn],ans[maxn];
int prime[maxn],cnt;
void get()
{
    prime[cnt++] = 2;
    prime[cnt++] = 3;
    for(ll i = 5,j = 2; i < maxn; i+=j,j=6-j)
    {
        if(bt[i/3LL]) continue;
        prime[cnt++] = i;
        if(i > maxn/i) continue;
        for(ll l = i*i,v=j; l < maxn; l+=v*i,v=6-v) bt[l/3LL] = 1;
    }
}

int sum[2][maxn];

void add(int i,int x,int v)
{
    for(;x < maxn; x+=(x&(-x)))
        sum[i][x] += v;
}

int getsum(int i,int x)
{
    int ans = 0;
    for(;x >= 1; x-=(x&(-x)))
        ans += sum[i][x];
    return ans;
}

int main()
{
    get();
    for(int i = 0; i < cnt; i++)
    {
        for(int j = prime[i];j < maxn; j+=prime[i])
        {
            vc[j].push_back(prime[i]);
        }
    }
    int n,m;
    while(scanf("%d%d",&n,&m)&&m+n){
        int k = 0;
        memset(sum,0,sizeof(sum));
        for(int i = 1; i < maxn; i++) last[i] = 0;
        for(int i = 1; i <= n; i++) scanf("%d",&a[i]);
        for(int i = 1; i <= n; i++){
            int pos = 1;
            for(int j = 0; j < vc[a[i]].size(); j++)
            {
                pos = max(pos,last[vc[a[i]][j]]+1);
                last[vc[a[i]][j]] = i;
            }
            R[i].l = pos;
            R[i].m = i;
        }

        for(int i = 1; i <= maxn; i++) last[i] = n+1;
        for(int i = n; i >= 1; i--){
            int pos = n;
            for(int j = 0; j < vc[a[i]].size(); j++)
            {
                pos = min(pos,last[vc[a[i]][j]]-1);
                last[vc[a[i]][j]] = i;
            }
            R[i].r = pos;
             RC[k++] = node(R[i].l,R[i].m,R[i].r,R[i].m,2);
              RC[k++] = node(R[i].l,R[i].m,R[i].r,R[i].r,3);
          //  cout << i << "l = " << R[i].l << "m = " << R[i].m << "r = " << R[i].r <<endl;
        }
        for(int i = 0; i < m; i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].x = q[i].r,q[i].t = i;
        sort(q,q+m);
        sort(RC,RC+k);
        int id = 0;
        for(int i = 0; i < m; i++)
        {
            while(id < k && RC[id].x <= q[i].r){
                 if(RC[id].x == q[i].r &&RC[id].t == 3) break;
                 if(RC[id].t == 2){
                    add(0,RC[id].l,1);
                    add(1,RC[id].m,1);
                 }
                 else if(RC[id].t == 3)
                 {
                    add(0,RC[id].l,-1);
                    add(1,RC[id].m,-1);
                 }
                 id++;
            }
            ans[q[i].t] = getsum(1,q[i].r)-getsum(1,q[i].l-1)-(getsum(0,q[i].r)-getsum(0,q[i].l));
        }
        for(int i = 0; i < m; i++)
        {
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值