时间复杂度和空间复杂度详解

本文详细介绍了算法效率的两个关键指标——时间复杂度和空间复杂度。时间复杂度关注算法的运行速度,通过大O的渐进表示法来描述。空间复杂度则衡量算法执行过程中所需的额外存储空间。文章还提供了计算大O阶的方法,并通过实例进一步解释了时间复杂度和空间复杂度的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法效率

      算法效率分析分为两种:第一中是时间效率,第二种是空间效率。时间效率被称为时间复杂度,空间效率被称为空间复杂度。时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需的额外空间。

二、时间复杂度

       简单的来说一个算法所花费的时间与其语句中的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。

       通常表示时间复杂度采用大O的渐进表示法,大O符号:用于描述函数渐进行为的数学符号。

       推到大O阶方法:

               1.用常数1取代运行时间中的所有加法常数。

               2.在修改后的运行次数函数中,只保留最高阶项。

               3.如果最高阶项存在且不为1,则去除这个项目相乘的常数。得到的结果就是大O阶。

三、空间复杂

       空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。可以这样说空间复杂度不是程序占用了多少bytes的空间,因为这个也没有太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本上跟时间复杂度类似,也是用大O渐进表示法。

四、示例(1~7时间复杂度;8~9空间复杂度)

    1.

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值