一、数据简介
环境质量不仅影响公众健康,还与经济的可持续发展息息相关。空气质量是我国环境治理的重要领域,其在日常生活中可感性高,直接影响人们的日常生产生活,还与经济环境、企业发展与盈利状况紧密相关,城市高质量发展愈发受到城市空气质量的约束,经济发展中持续的能源消耗上升以及环境恶化加剧会制约经济发展,使得经济发展质量下降。
空气质量指数(Air Quality Index,AQI)是我国现行的,用于定量描述空气质量状况的非线性无量纲指数,适用于表示城市的短期空气质量状况和变化趋势。其指数分级计算参考的标准是GB 3095-2012《环境空气质量标准》(现行,2012年最新修订),参与评价的污染物为SO2、NO2、PM10、PM2.5、O3、CO等,发布频率为每小时发布一次。
对空气质量的评定是由城市空气质量监测站对存在于大气、空气中的污染物质进行定点、连续或者定时的采样、测量和分析后得到相关的数据。空气质量监测站位于各城市的建成区内,分布相对均匀,覆盖全部建成区,最终的空气质量指数是由城市中所有监测点的污染物浓度的算术平均值计算而来,代表所在城市建成区污染物浓度的总体平均值。因此,空气质量站点监测数据是评定空气质量的一手数据,且空气质量监测站点的选址也会影响对于空气质量的评定。
因空气污染物消散速度较快,对治理措施的反应迅速,以及日度数据的可得性等原因,空气质量数据常常被用于实证研究。CnOpenData平台的数据既包含各城市空气质量的日度数据,也包括各监测站点的位置信息和监测数据, 采集了自2014年5月13日以来的全部信息,为空气质量的相关研究提供了完整、可靠的数据来源。
二、时间区间
监测时间自2014.05.13开始
三、字段展示
监测站点列表
中文字段 | 字段中文释义 |
---|---|
监测点编码 | 监测点编码 |
监测点名称 | 监测点名称 |
城市 | 城市 |
经度 | 经度 |
纬度 | 纬度 |
城市空气质量表
中文字段展示 | 字段中文释义 |
---|---|
date | 数据采集日期 |
hour | 数据采集时刻 |
城市 | 数据采集城市 |
AQI | 空气质量指数 |
PM2.5 | 颗粒物(粒径小于等于2.5μm)1小时平均值 |
PM2.5_24h | 颗粒物(粒径小于等于2.5μm)24小时滑动平均值 |
PM10 | 颗粒物(粒径小于等于10μm)1小时平均值 |
PM10_24h | 颗粒物(粒径小于等于10μm)24小时滑动平均值 |
SO2 | 二氧化硫1小时平均值 |
SO2_24h | 二氧化硫24小时滑动平均值 |
NO2 | 二氧化氮1小时平均值 |
NO2_24h | 二氧化氮24小时滑动平均值 |
O3 | 臭氧1小时平均值 |
O3_24h | 臭氧日最大1小时平均值 |
O3_8h | 臭氧8小时滑动平均值 |
O3_8h_24h | 臭氧日最大8小时滑动平均值 |
CO | 一氧化碳1小时平均值 |
CO_24h | 一氧化碳24小时滑动平均值 |
站点空气质量表
中文字段展示 | 字段中文释义 |
---|---|
date | 数据采集日期 |
hour | 数据采集时刻 |
站点 | 数据采集站点 |
AQI | 空气质量指数 |
PM2.5 | 颗粒物(粒径小于等于2.5μm)1小时平均值 |
PM2.5_24h | 颗粒物(粒径小于等于2.5μm)24小时滑动平均值 |
PM10 | 颗粒物(粒径小于等于10μm)1小时平均值 |
PM10_24h | 颗粒物(粒径小于等于10μm)24小时滑动平均值 |
SO2 | 二氧化硫1小时平均值 |
SO2_24h | 二氧化硫24小时滑动平均值 |
NO2 | 二氧化氮1小时平均值 |
NO2_24h | 二氧化氮24小时滑动平均值 |
O3 | 臭氧1小时平均值 |
O3_24h | 臭氧日最大1小时平均值 |
O3_8h | 臭氧8小时滑动平均值 |
O3_8h_24h | 臭氧日最大8小时滑动平均值 |
CO | 一氧化碳1小时平均值 |
CO_24h | 一氧化碳24小时滑动平均值 |
四、样本数据
检测站点列表
date | hour | 站点 | AQI | PM2.5 | PM2.5_24h | PM10 | PM10_24h | SO2 | SO2_24h | NO2 | NO2_24h | O3 | O3_24h | O3_8h | O3_8h_24h | CO | CO_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20190101 | 8 | 3025A | 64 | 46 | 39 | 50 | 41 | 6 | 5 | 20 | 17 | 12 | 22 | 18 | 20 | 0.8 | 0.8 |
20190101 | 8 | 1197A | |||||||||||||||
20190101 | 8 | 1282A | 33 | 13 | 18 | 33 | 31 | 4 | 4 | 36 | 36 | 10 | 37 | 18 | 20 | 0.7 | 0.7 |
20190101 | 8 | 1064A | 72 | 52 | 46 | 81 | 72 | 15 | 15 | 38 | 41 | 5 | 41 | 5 | 5 | 1.4 | 1.2 |
20190101 | 8 | 2926A | 76 | 50 | 59 | 102 | 128 | 44 | 50 | 44 | 52 | 15 | 52 | 12 | 20 | 1.2 | 1.4 |
20190101 | 8 | 2708A | 16 | 4 | 14 | 9 | 22 | 5 | 13 | 2 | 7 | 51 | 51 | 28 | 28 | 0.8 | 0.9 |
20190101 | 8 | 1813A | |||||||||||||||
20190101 | 8 | 2177A | |||||||||||||||
20190101 | 8 | 1728A | 113 | 85 | 53 | 145 | 90 | 40 | 36 | 49 | 39 | 6 | 64 | 6 | 9 | 2.7 | 1.5 |
城市空气质量表
date | hour | 城市 | AQI | PM2.5 | PM2.5_24h | PM10 | PM10_24h | SO2 | SO2_24h | NO2 | NO2_24h | O3 | O3_24h | O3_8h | O3_8h_24h | CO | CO_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20140513 | 18 | 张家界 | 103 | 77 | 67 | 105 | 87 | 8 | 13 | 15 | 14 | 81 | 114 | 86 | 109 | 1.637 | 1.372 |
20140513 | 18 | 湘潭 | 84 | 62 | 53 | 104 | 92 | 44 | 52 | 49 | 42 | 76 | 129 | 93 | 139 | 1.127 | 1.198 |
20140513 | 18 | 沧州 | 84 | 46 | 50 | 75 | 81 | 22 | 28 | 22 | 24 | 127 | 159 | 140 | 145 | 0.768 | 0.734 |
20140513 | 18 | 淄博 | 83 | 48 | 48 | 114 | 126 | 54 | 100 | 47 | 51 | 138 | 150 | 137 | 137 | 1.324 | 1.632 |
20140513 | 18 | 杭州 | 95 | 71 | 59 | 132 | 111 | 47 | 30 | 69 | 61 | 99 | 129 | 95 | 152 | 0.918 | 0.913 |
20140513 | 18 | 赤峰 | 113 | 19 | 37 | 174 | 135 | 12 | 27 | 11 | 29 | 66 | 79 | 72 | 83 | 0.657 | 1.316 |
20140513 | 18 | 福州 | 60 | 27 | 23 | 68 | 52 | 8 | 7 | 30 | 26 | 75 | 107 | 87 | 88 | 1.182 | 1.199 |
20140513 | 18 | 舟山 | 74 | 31 | 51 | 38 | 66 | 8 | 12 | 33 | 38 | 116 | 178 | 128 | 146 | 1.141 | 1.351 |
20140513 | 18 | 日照 | 121 | 76 | 65 | 169 | 155 | 30 | 48 | 43 | 66 | 240 | 240 | 180 | 180 | 0.871 | 1.376 |
站点空气质量表
date | hour | 城市 | AQI | PM2.5 | PM2.5_24h | PM10 | PM10_24h | SO2 | SO2_24h | NO2 | NO2_24h | O3 | O3_24h | O3_8h | O3_8h_24h | CO | CO_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20140513 | 18 | 张家界 | 103 | 77 | 67 | 105 | 87 | 8 | 13 | 15 | 14 | 81 | 114 | 86 | 109 | 1.637 | 1.372 |
20140513 | 18 | 湘潭 | 84 | 62 | 53 | 104 | 92 | 44 | 52 | 49 | 42 | 76 | 129 | 93 | 139 | 1.127 | 1.198 |
20140513 | 18 | 沧州 | 84 | 46 | 50 | 75 | 81 | 22 | 28 | 22 | 24 | 127 | 159 | 140 | 145 | 0.768 | 0.734 |
20140513 | 18 | 淄博 | 83 | 48 | 48 | 114 | 126 | 54 | 100 | 47 | 51 | 138 | 150 | 137 | 137 | 1.324 | 1.632 |
20140513 | 18 | 杭州 | 95 | 71 | 59 | 132 | 111 | 47 | 30 | 69 | 61 | 99 | 129 | 95 | 152 | 0.918 | 0.913 |
20140513 | 18 | 赤峰 | 113 | 19 | 37 | 174 | 135 | 12 | 27 | 11 | 29 | 66 | 79 | 72 | 83 | 0.657 | 1.316 |
20140513 | 18 | 福州 | 60 | 27 | 23 | 68 | 52 | 8 | 7 | 30 | 26 | 75 | 107 | 87 | 88 | 1.182 | 1.199 |
20140513 | 18 | 舟山 | 74 | 31 | 51 | 38 | 66 | 8 | 12 | 33 | 38 | 116 | 178 | 128 | 146 | 1.141 | 1.351 |
20140513 | 18 | 日照 | 121 | 76 | 65 | 169 | 155 | 30 | 48 | 43 | 66 | 240 | 240 | 180 | 180 | 0.871 | 1.376 |
五、相关文献
Dong, R., Fisman, R., Wang, Y., and Xu, N.H., 2019, “Air pollution, affect, and forecasting bias: Evidence from Chinese financial analysts”, Journal of Financial Economics, forthcoming.
Huang, J. K., Xu, N. H., and Yu, H.H., 2019, “Pollution and performance: Do investors make worse trades on hazy days?”, Management Science, forthcoming.
黄溶冰、赵谦、王丽艳,2019:《自然资源资产离任审计与空气污染防治:“和谐锦标赛”还是“环保资格赛”》,《中国工业经济》第10期。
沈永建、于双丽、蒋德权,2019:《空气质量改善能降低企业劳动力成本吗?》,《管理世界》第6期。
孙传旺、罗源、姚昕,2019:《交通基础设施与城市空气污染——来自中国的经验证据》,《经济研究》第8期。 陈硕、陈婷,2014:《空气质量与公共健康:以火电厂二氧化硫排放为例》,《经济研究》第8期。
郭峰、石庆玲,2017:《官员更替、合谋震慑与空气质量的临时性改善》,《经济研究》第7期。
罗知、李浩然,2018:《“大气十条”政策的实施对空气质量的影响》,《中国工业经济》第9期。
六、数据更新频率
年度更新(CnOpenData 空气质量站点监测数据)