Bayesian facerevisited : a joint formulation 学习笔记

本文转自:http://m.blog.csdn.net/blog/xp215774576/45025145

Bayesian facerevisited : a joint formulation

A joint formulation: x = u + ε

这篇论文做了以下几件事情:


1.   回顾由Baback Moghaddam 等 提出经典贝叶斯人脸识别方法。

而Face Verification 和Face identification 是人脸识别两个子问题。 

Face verification是指验证两张脸是否为同一个人。

Face identification 是指寻找一张检测的脸是谁。

这篇文章主要是Face verification 问题,而Face verification 是Face identification的基础。


经典贝叶斯人脸识别的原理:

R(x1,x2)=log   x1,x2是验证的两张脸。

Hi是假设条件为两张脸是同一个人

He是假设条件为两张脸不是同一个人

det=x1-x2,x1,x2代表人脸特征。

最后用R的比例值作为验证两张脸为同一个人的决策值。


如果两张脸是同一张脸,即在Hi条件下,det =x1-x2的值满足两张脸相同的特征的概率很大,即p大。

且He条件下,满足两张脸不同特征的概率小,

即p( 概率小,最后R值很大,我们的验证结果是两张脸是同一张脸,则决策成功。如果两张脸不是同一张脸,则相反,最后R值很小,

我们的验证结果是两张脸不是同一张脸,则决策成功。

这是两种条件分对。答案Yes.

如果两张脸是同一张脸,Hi下, 分布小概率下,即误差分为不满足同脸特征。

He下分正确,也满足不是同一张脸特征。则最后值相对小,则模糊分不清。反之,同样。这是一种条件分错。答案未知.

最后两种条件都分错.答案No。验证分错。这种概率最小。

这两种都分错的概率为误差概率。这人脸验证要通过两个关口的检验,才 最终决策。

 

如上图,class 1 代表 两种脸为同一张脸,class 2 代表两种脸不是同一张脸。

以前的贝叶斯方法是基于给定两张脸的差分X-Y模型。把两种脸的2维空间投影到一维空间。

上图所示:模型的差分X-Y等于2维空间的点投影到一维上,再验证两张脸。虽然能捕捉主要的信息,但在上图投影在原点范围是不可分的。就像上面分析的,两种条,下,有一种条件分类失败,就会让最后验证值R不确定。造成不可分Inseparable。

因此本论文,提出直接在(x1,x2)联合下建立2维模型,而且在同样的框架下-贝叶斯分类。算法的具体思路:1.求(x1,x2)的概率分布假设分高斯分布。2.模型、用EM-like算法训练参数。3.每个脸等于两个独立的潜在变量之和,不同人的脸的变化+相同人脸的变化。4.给定学习模型,我们获得联合分布(x1,x2),再log可能的闭合表达比例r,能在测试阶段获得有效的计算。

 

作者发现 联合贝叶斯方法与其他人脸验证学习方法:度量学习和基于参照模型之间的有趣联系。1.我们联合贝叶斯的相似性度量超过了马氏距离的标准形式。2.在这种新的相似性度量保持在原始特征空间上的分离,导致更好的性能。3.这种 joint Bayesian formulation 是参数形式的参照模型的一种。

 

显而易见,好的监督算法,或非监督算法,包括我们的,都需要好的训练的数据库。

这个数据库要”wide” 和”deep”,广和深。这标准的(Labeled Face in the wild ) LFW上,数据不广和深。作者提供了一种新的数据库,(WDRef).有3000subject,对象。其中2000个对象有超过15个图片,1000个对象多于40个图片)。而且,在这数据库上,还分享了两种底层存取特征。

 

这论文主要贡献:

1 Ajoint formulation of Bayesian face with an appropriate prior on the facerepresentation.

2证明joint Bayesian face 超过最先进的监督方法。

3公开了广和深的数据库

 

2.1  a naive formulation

一种天真形式: (x1,x2)概率分布假设为高斯分布,然后求P(x1,x2|Hi),p(x1,x2|He),这两种概率分布P(x1,x2|Hi)=N(0, ∑I),p(x1,x2|He)= N(0, ∑E)。再用R求两种概率的商,来验证x1,x2的相似性。 得到的结果后面验证要比传统的贝叶斯人脸好。

上面这种方法是从统计数据中,直接训练协方差矩阵∑I,∑E。有两个因素限制了贝叶斯性能:

1.数据集中样本不完全独立,这∑E不是blockwise 块对对角线出现矩阵。

2.人脸特征为d维特征,那么协方差矩阵为2d矩阵。

左边图:是不同人的脸变化分布,右边是同一个人的脸变化分布。

在左边是人脸都位于泡泡中间,一个人的人脸有且只有一张,高斯分布。右边人脸空间是同一个人的脸变化分布,高斯分布。左右空间是相互独立。每个人脸对象是左identity和右within-person之和。所以人脸x = u + ε.x为x1,或x2.显然,由于u, ε为高斯分布,并相反独立,所以x也是高斯分布。X1,x2有相同高斯分布,联合分布(x1,x2)也为高斯分布N(0, ∑12). ∑12=∑u+∑ε.u= N (0,S µ ).

 

u服从N (0,S µ ), ε服从N (0,S ε),即人与人之间脸的变化(天生遗传变化),与同一个人的脸的变化(光照,姿态,表情,等)假设相互独立. 由于u与e独立高斯分布。

回顾上面两个假设Hi,He.和R(x1,x2).以上以上,(x1,x2)服从N(0,cov(x1,x2)).

cov(x1,x2)=cov(u1,u2)+cov(ε1, ε2).

x1,x2协方差cov(x1,x2)是指x1,x2相互关系,相互关系越大,协方差越大。相互关系越小,协方差越小。

Cov(u1,u2)是不同人的脸相互关系与同一个人的相互关系之后。

在P (x 1 ,x 2 |H I )下,

Modern Learning

模型主要训练S µ,S ε,来求r(x 1 ,x 2 )。S µ,S ε可以很好近似逼近。用EM-like算法。

EM-Exception Maximum用来求S µ,S ε.

EM算法,分为两步:第一步,求hidden 变量的最大期望值,寻找参数下的潜在变量最大似然估计或最大后验概率的算法。第二步,用最大期望值,来求参数。最后用参数代入第一步。循环迭代。重复迭代,直到收敛。

最大似然估计:随机抽取A,B,C,D,…, ,若抽到了A,我们说A的概率最大。写出似然函数,对似然函数取对数,求导,解似然方程(求参数)。即求极大似然估计下,使求得参数,使这样本出现的概率最大。每个样本相互独立,出现概率的乘积为似然函数,再相乘就等到总体最大似然函数,最后求让似然函数最大的参数值。

 

判别方法:直接参数判别函数,不考虑样本的生成模型,直接研究预测模型。支持向量机,决策树,最近邻。需要样本少。

生成方法:要研究概率密度函数,用样本的概率密度函数来做决策。因此需要大量样本。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯参数估计器是一种在贝叶斯统计理论框架下进行参数估计的方法。在传统频率统计中,参数估计通常是通过最大似然估计或最小均方误差估计来进行的。而在贝叶斯统计中,我们将参数看作是一个随机变量,其具有先验概率分布。当我们获得了一些观测数据后,我们可以通过贝叶斯定理来更新参数的后验概率分布,并根据后验分布来估计参数的值。 贝叶斯参数估计器的核心思想是将观测数据纳入先验信息中,通过贝叶斯定理计算参数的后验概率分布,并根据后验分布来作出参数估计。贝叶斯参数估计器相比于传统频率统计方法有几个优点: 1. 能够容易地将先验信息融入参数估计过程中,这对于缺乏大量观测数据的情况下特别有用。 2. 能够提供参数估计的置信区间,这可以帮助我们更好地理解参数估计的不确定性。 3. 能够在不同现实场景中提供更加通用且健壮的参数估计方法。 但是贝叶斯参数估计器也有一些限制,其中最主要的是需要具有合适的先验分布,并且对于不同的先验分布可能会得到不同的后验分布和参数估计结果。因此,选择合适的先验分布是贝叶斯参数估计中的一个重要问题。 总的来说,贝叶斯参数估计器是一种灵活且强大的参数估计方法,它能够将先验信息纳入参数估计过程中,并且能够提供参数估计的不确定性信息。在实际应用中,我们可以根据具体问题的特点来选择适合的参数估计方法,以获得更加准确和可靠的参数估计结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值