- 博客(43)
- 收藏
- 关注
转载 python机器学习入门资料梳理
在python基本语法入门之后,就要准备选一个研究方向了。Web是自己比较感兴趣的方向,可是,导师这边的数据处理肯定不能由我做主了。paper、peper、paper……真的挺愁人的还有几个月就要进行春季实习招聘了,加油!总结一下python机器学习方面的资料吧。1、数据处理1.1 综合ScipySciPy is a Python-based e
2016-02-01 15:23:28 998
转载 【Yoshua Bengio 亲自解答】机器学习 81 个问题及答案 (部分)
【Yoshua Bengio 亲自解答】机器学习 81 个问题及答案 (部分) 新智元编译1来源:Quora译者:张巨岩 王婉婷 李宏菲 戴秋池这是 Quora 的最新节目,针对特定话题进行系列的问答。如果你不了解 Quora,可以把它看作美国版的知乎,不过里面大咖云集,奥巴马、Elon Musk、Bill Gates 都会在上面回答问题。
2016-01-25 08:43:51 7954
转载 七步精通Python机器学习
转自:http://datartisan.com/article/detail/66.html#rd七步精通Python机器学习开始。这是最容易令人丧失斗志的两个字。迈出第一步通常最艰难。当可以选择的方向太多时,就更让人两腿发软了。从哪里开始?本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机
2016-01-18 15:33:16 924
转载 神经网络浅讲:从神经元到深度学习
转自:http://www.cnblogs.com/subconscious/p/5058741.html神经网络浅讲:从神经元到深度学习神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合
2016-01-13 15:27:52 1036
转载 论文笔记:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks
转自:http://blog.csdn.net/anxiaoxi45/article/details/46522155论文笔记:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks文章: http://arxiv.org/abs/1506.01497 源
2016-01-05 10:37:48 1354
转载 非极大值抑制(Non-maximum suppression)在物体检测领域的应用
转自:http://blog.csdn.net/pb09013037/article/details/45477591最近在一个项目,需要用到非极大值抑制,找了很长时间没有找到非极大值抑制在物体检测方面的的详细解释,最后只有翻阅相关的代码来理解。一、Nms主要目的 在物体检测非极大值抑制应用十分广泛,主要目的是为了消除多余的框,找到最佳的物体检
2015-12-30 16:11:51 2934 1
转载 论文笔记 《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
用SPP替代了最后的pooling层,使得网络能够以任意尺寸的图片作为输入,输出等长的特征
2015-12-29 16:56:38 1985
转载 论文笔记 《Rich feature hierarchies for accurate object detection and semantic segmentation》
一句话概括,selective search+CNN+L-SVM
2015-12-29 14:43:30 21070 1
转载 论文笔记 《Selective Search for Object Recognition》
一句话概括,用了segmentation和grouping的方法来进行object proposal,然后用了一个SVM进行物体识别。
2015-12-29 11:35:55 9039 1
转载 object proposal的综述
转自:http://zhangliliang.com/2015/05/19/p http:// aper-note-object-proposal-review-pami15/论文笔记 《Fully Convolutional Neural Networks for Crowd Segmentation》最近开始准备回到detection大坑,刚
2015-12-29 09:13:15 6550
转载 人脸识别技术大总结1——Face Detection & Alignment
转自:http://www.cnblogs.com/sciencefans/人脸识别技术大总结1——Face Detection & Alignment搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Face detection, alignment, verification and identificatio
2015-12-17 10:01:57 1282
转载 DeepID人脸识别算法之三代
转自:http://blog.csdn.net/stdcoutzyx/article/details/42091205DeepID人脸识别算法之三代问题导读1.卷积神经网络在DeepID中的作用是什么?2.DeepID为什么有效?3.如何使得卷积神经网络训练的更加的充分?4.增大数据集有哪两种方法?5.DeepID的三代是
2015-11-30 11:27:37 1083
转载 机器学习:用初等数学解读逻辑回归
转自:http://blog.csdn.net/longxinchen_ml/article/details/49284391一、 引言前一篇文章《机器学习系列(1)逻辑回归初步》发表后意犹未尽,感觉关于逻辑回归的很多神奇特性还没来得及深入展开,于是我们新加了这篇《机器学习系列(2)_用初等数学视角解读逻辑回归》。为了降低理解难度,本文试图用最基础的初等数学来解
2015-11-24 15:22:55 546
转载 Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
转自:http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.htmlMust Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially Convolutiona
2015-11-17 09:50:20 1273
转载 反向传导算法 & SOFTMAX & Innerproduct_layer.cpp & softmax_loss_layer.cpp
转自:http://blog.csdn.net/qq_16055159/article/details/45952915
2015-10-28 15:37:46 516
转载 NVIDIA DIGITS 学习笔记(NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0)
转自:http://blog.csdn.net/enjoyyl/article/details/47397505#digits简介NVIDIA DIGITS 学习笔记(NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0)NVIDIA DIGITS-2
2015-10-23 16:55:12 761
转载 如何在程序中调用Caffe做图像分类
如何在程序中调用Caffe做图像分类姜糖水 2015-05-02 370 阅读图像Caffe是目前深度学习比较优秀好用的一个开源库,采样c++和CUDA实现,具有速度快,模型定义方便等优点。学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的接口。Caffe的数据层可以从数据库(支持leveldb、lmdb、hdf5)、图片、和内存中
2015-10-23 15:46:12 1080
转载 Coursera公开课笔记: 斯坦福大学机器学习第一课“引言(Introduction)”
转自:http://mp.weixin.qq.com/s?__biz=MjM5ODkzMzMwMQ==&mid=400038068&idx=1&sn=80b9b10431cf292aa8f19b8ab31f48d1#rdCoursera公开课笔记: 斯坦福大学机器学习第一课“引言(Introduction)”三年前Coursera刚刚开办的时候跟了一下A
2015-10-19 09:59:25 901
转载 机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size
转自:http://blog.csdn.net/u012162613/article/details/44265967本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值。学习速率(learning rate,η)运用梯度下降算法进行优化时,权重的更新规则中,在梯度
2015-10-15 09:35:23 672
转载 Very Deep Convolutional Networks for Large-Scale Image Recognition
转自:http://blog.csdn.net/stdcoutzyx/article/details/39736509这篇论文是今年9月份的论文[1],比较新,其中的观点感觉对卷积神经网络的参数调整大有指导作用,特总结之。关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一下。本文以下内容即是论文的笔记,笔
2015-09-11 10:10:47 596
转载 深度卷积网络CNN与图像语义分割
转自:http://xiahouzuoxin.github.io/notes/html/深度卷积网络CNN与图像语义分割.html级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来读一些源码玩玩熟悉Caffe接口,写Demo这是硬功夫分析各层Layer输出特征级别5:何不自己搭个CNN玩玩Train
2015-09-11 09:24:37 1271
转载 Caffe AlexNet网络
转自: http://blog.sina.com.cn/s/blog_eb3aea990102v47i.html在2012年的时候,Geoffrey和他学生Alex为了回应质疑者,在ImageNet的竞赛中出手了,刷新了image classification的记录,一举奠定了deep learning 在计算机视觉中的地位。后边的故事大家都知道了,deep learning一统天
2015-09-09 15:08:31 5079
转载 计算机视觉-机器学习近年部分综述
转自:http://www.cvrobot.net/computer-vision-and-machine-learning-summary-in-recent-years/计算机视觉和机器学习领域 近两年部分综述文章,欢迎推荐其他的文章,不定期更新。 【2015】 [1]. E.Sariyanidi, H. Gunes, A. Caval
2015-08-13 16:31:25 904
转载 图像识别中的深度学习
来源:《中国计算机学会通讯》第8期《专题》作者:王晓刚深度学习发展历史深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神经网络。神经网络的起源可追溯到20世纪40年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理解决各种机器学习问题。1986年,鲁梅
2015-08-13 10:23:52 3407 1
转载 具有肤质保留功能的磨皮算法及其实现细节
转自:http://www.cnblogs.com/Imageshop/p/4709710.html在几年前写的一篇关于BEEP的文章时,我曾经说过Beep的去噪作用可以用于磨皮,并且给出了结论BEEP比可牛和美图等的效果要更为好,现在看来,那个结论确实是太为夸张和固定了。不同的人的审美观不同,同一个人在不同时段审美观也会有所差异,现在看来,我到时觉得可牛影像的带有肤质保留效果
2015-08-07 09:40:12 14253 1
转载 从Theano到Lasagne:基于Python的深度学习的框架和库
转自:http://www.csdn.net/article/2015-08-01/2825362##1_804311562_10285摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism。在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具。深度学习是机器学习和人工智能
2015-08-04 10:00:33 766
转载 机器学习讲座总结-读图时代的识图技术-车库咖啡
本文转至: http://blog.sina.com.cn/s/blog_eb3aea990101f3uo.html在车库咖啡见到了传说的中的大牛 黄畅博士 @黄畅_了解的不只是人脸 ,黄博士对于识图技术进行了一个综述,下面是这次报告的总结。1. 关于机器学习优化的目的:黄博士提到机器学习并非以求最优为目的,而是以控制overfitting为目的。这个非正式报告中提到的
2015-07-30 09:44:38 655
转载 人脸检测研究2015最新进展
人脸检测研究2015最新进展搜集整理了2004~2015性能最好的人脸检测的部分资料,欢迎交流和补充相关资料。1:人脸检测性能1.1 人脸检测测评 目前有两个比较大的人脸测评网站: 1:Face Detection Data Set and Benchmark(FDDB) 网址:http://vis-www.
2015-06-23 11:00:35 1670
转载 机器学习经典书籍
入门书单《数学之美》 PDF作者吴军大家都很熟悉。以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。《Programming Collective Intelligence》(《集体智慧编程》)PDF作者Toby Segaran也是《BeautifulData : The Stories Behind Elegant Data Solutions》(《数据
2015-06-17 10:22:05 613
转载 (R-CNN)Rich feature hierarchies for accurate object detection and semantic segmentation
文章:《Rich feature hierarchies for accurate object detection and semantic segmentation》 作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 单位:UC Berkeley ,CVPR2014? 是否开放代码:是 ,
2015-06-09 10:27:23 931
转载 在Windows下编译CAFFE并使用其matlab和python接口
转自:http://blog.csdn.net/happynear/article/details/45372231零、最近更新2015/05/29 发现上个版本的lmdb.lib使用了别人在vs2013下编译的版本,现改为vs2012版; 2015/05/29 添加了提取任意层特征的matlab接口,使用方法:OUTPUT = caffe('get_features',
2015-06-04 14:24:20 3438
转载 部分计算机视觉数据集汇总
经典/热点计算机视觉数据集http://yann.lecun.com/exdb/mnist/ The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. Colle
2015-06-04 08:52:32 731
转载 深度学习-LeCun、Bengio和Hinton的联合综述
摘要:最新的《Nature》杂志专门为“人工智能 + 机器人”开辟了一个专题 ,发表多篇相关论文,其中包括了LeCun、Bengio和Hinton首次合作的这篇综述文章“Deep Learning”。本文为该综述文章中文译文的上半部分。【编者按】三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在深度学习领域的地位无人不知。为纪念人工智能提出60周年
2015-06-02 10:40:38 2789 1
原创 Bayesian face revisited : a joint formulation 笔记
Bayesian Face Revisited A Joint Formulation贝叶斯在人脸识别中的作用人脸识别问题是多类小样本问题,因此直接用人脸图像作为模式进行贝叶斯分类难以实现。用两幅图像灰度差作为模式矢量,若x1,x2属于同一人则称为类内模式,不同人则为类间模式。从而将人脸识别的多分类问题转化为和的二分类问题。如果S(△)>1/2这认为属于同一
2015-06-01 09:18:14 6022
转载 计算机视觉、机器学习相关领域论文和源代码大集合
转自:http://blog.csdn.net/zouxy09/article/details/8550952计算机视觉、机器学习相关领域论文和源代码大集合注:下面有project网站的大部分都有paper和相应的code。Code一般是C/C++或者Matlab代码。最近一次更新:2013-3-17一、特征提取Feature E
2015-05-26 15:07:23 1082
转载 (GoogLeNet)Going deeper with convolutions笔记
转自 http://www.gageet.com/2014/09203.phpGoing deeper with convolutions笔记ContentsAbstractIntroductionRelated WorkMotivation and High Level ConsiderationsArchitectural Detai
2015-05-25 11:00:11 4315
转载 Random Ponderings - A Brief Overview of Deep Learning
转自:http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.htmlA Brief Overview of Deep Learning(This is a guest post by Ilya Sutskever on the intuition behind deep learning
2015-05-22 15:50:26 1173
转载 浅析最大似然到EM算法
转自:http://blog.csdn.net/zouxy09/article/details/8537620浅析最大似然到EM算法 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问
2015-05-14 13:56:58 616
转载 机器学习领域的几种主要学习方式
转自:http://www.smartcitychina.cn/zhyy/2014-12/3985.html学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适
2015-05-12 09:19:12 625
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人