HDU - 2544 最短路

无向图最短路径算法

题目链接:https://vjudge.net/problem/HDU-2544

题意详见题目链接。

分析:很直白的一道题,就是求一个无向图的最短路径。多种方法都可以求。BFS,Dijkstra(迪杰斯特拉)算法,Floyd算法都可以求解。关于两种算法,可详见此链接。(写的很好,尤其是图做得好,一目了然,看一遍就知道这种算法的思路,强烈建议看一看)。

BFS版:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
int num,n,m;
int head[1005];

struct Edge{
    int from,to,val,next;
}edge[maxn];

void init(){
    num=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int w){
    Edge E={u,v,w,head[u]};
    edge[num]=E;
    head[u]=num++;
}

queue<int> q;
int dist[1005];

void BFS(int st){ 
    memset(dist,INF,sizeof(dist));
    q.push(st);
    dist[1]=0;
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=head[u];i!=-1;i=edge[i].next){
            int v=edge[i].to;
            if(dist[v]>dist[u]+edge[i].val){
                dist[v]=dist[u]+edge[i].val;
                q.push(v);
            }
        }
    }
}

int main(){
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&n,&m)&&(n||m)){
        init();
        int a,b,c;
        for(int i=0;i<m;i++){
            scanf("%d%d%d",&a,&b,&c);
            addedge(a,b,c);
            addedge(b,a,c);//用邻接表存储
        }
        BFS(1);
        printf("%d\n",dist[n]);
    }
    return 0;
}

Dijkstra版:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
int mp[110][110],dist[110],vis[110];

void Dijkstra(int n,int st){
    for(int i=1;i<=n;i++)
        dist[i]=mp[1][i];
    vis[st]=1;
    for(int i=1;i<=n;i++){
        int p,_min=INF;
        for(int j=1;j<=n;j++){
            if(!vis[j]&&dist[j]<_min){
                p=j;
                _min=dist[j];
            }
        }
        vis[p]=1;
        for(int j=1;j<=n;j++){
            if(!vis[j]&&dist[p]+mp[p][j]<dist[j]){
                dist[j]=dist[p]+mp[p][j];
            }
        }
    }
}

int main() {
    //freopen("in.txt","r",stdin);
    int n,m;
    while(scanf("%d%d",&n,&m)&&(n||m)){
        memset(mp,INF,sizeof(mp));
        memset(vis,0,sizeof(vis));
        int a,b,c;
        for(int i=1;i<=m;i++){
            scanf("%d%d%d",&a,&b,&c);
            mp[a][b]=mp[b][a]=c;
        }
        Dijkstra(n,1);
        printf("%d\n",dist[n]);
    }
    return 0;
}


floyd 版:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1005;
int dist[maxn][maxn];

int main() {
    //freopen("in.txt","r",stdin);
    int n,m;
    while(scanf("%d%d",&n,&m)&&(n||m)) {
        memset(dist,INF,sizeof(dist));
        int a,b,c;
        for (int i=0; i<m; i++) {
            scanf("%d%d%d",&a,&b,&c);
            dist[b][a]=dist[a][b]=c;
        }
        for (int k=1; k<=n; k++) {
            for (int i=1; i<=n; i++) {
                for (int j=1; j<=n; j++) {
                    dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j]);
                }
            }
        }
        printf("%d\n",dist[1][n]);
    }
    return 0;
}



汽车与停车位关键点检测数据集 一、基础信息 • 数据集名称:汽车与停车位关键点检测数据集 • 图片数量: 训练集:308张图片 验证集:47张图片 测试集:22张图片 总计:377张实际场景图片 • 训练集:308张图片 • 验证集:47张图片 • 测试集:22张图片 • 总计:377张实际场景图片 • 分类类别: car(汽车):常见交通工具,用于检测车辆位置和形状。 parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • car(汽车):常见交通工具,用于检测车辆位置和形状。 • parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • 标注格式:YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件来源于真实环境,覆盖多种停车场景。 二、适用场景 • 智能停车管理系统开发:用于自动检测停车位占用状态和汽车位置,提升停车场管理效率。 • 自动驾驶与辅助驾驶系统:帮助车辆识别可用停车位并精准定位,支持自动泊车功能。 • 城市交通监控与规划:分析停车位使用模式和汽车分布,优化城市交通资源分配。 • 计算机视觉研究:支持关键点检测、目标定位等任务,推动自动驾驶和智能交通算法创新。 三、数据集优势 • 关键点标注精准:每个标注包含多个关键点坐标,精确描述汽车和停车位的形状与位置,确保模型学习细粒度特征。 • 场景多样性:数据涵盖不同环境和角度,增强模型在复杂场景下的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于集成到主流深度学习框架,方便快速部署和实验。 • 实用价值突出:直接应用于智能交通和自动驾驶领域,为停车管理和车辆导航提供可靠数据支撑。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值