Improving Transferability of Adversarial Examples with Input Diversity

DI2-FGSM (CVPR2019)

我们提出了通过构造多样性输入模式来提高对抗样本的迁移性。不仅仅用原始的图片生成对抗样本,我们的算法在每次的迭代中,引入了对于干净图片的随机变化

Introduction:

一般来说,在白盒攻击设置中,迭代攻击比单步攻击可以获得更高的成功率,因为攻击者对网络结构和权重有完美的了解。然而,如果这些对抗性的例子在不同的网络上进行测试(无论是在网络结构、权重还是两者方面),即黑盒设置,单步攻击表现得更好。这种权衡是由于迭代攻击往往会过拟合特定的网络参数(即具有较高的白箱成功率),从而使生成的对抗性例子很少转移到其他网络(即具有较低的黑箱成功率),而单步攻击通常不拟合网络参数。

在这项工作中,我们建议通过创建不同的输入模式来提高敌对的例子的可移植性。我们的工作受到了数据增强策略的启发。

model:

DI2 -FGSM:首先,我们提出了反输入迭代快速梯度符号法(DI2-FGSM),该方法在I-FGSM每次迭代时对输入的概率为p,应用图像变换T(·),以缓解过拟合现象。在本文中,我们考虑随机调整大小,它将输入图像的大小调整为随机大小,以及随机填充,它以随机的方式在输入图像周围填充零,作为图像转换T(·)的实例化。转换概率p控制了白盒模型的成功率和黑盒模型的成功率之间的权衡。我们还实验了其他图像转换,例如,旋转或翻转,以创建不同的输入模式,并发现随机调整大小和填充会产生具有最佳可转移性的对抗性例子。
在这里插入图片描述在这里插入图片描述

M-DI2 -FGSM:
在MI-FGSM基础上扩展:
在这里插入图片描述

FGSM系列关系:
在这里插入图片描述

攻击集成模型

Liu等人认为,同时攻击多个网络的集合可以产生更强的对抗性例子。其动机是,如果一个对抗性的图像在多个网络中仍然是对抗性的,那么它也更有可能转移到其他网络中。我们遵循在以下集成策略,它将logit激活融合在一起,同时攻击多个网络。具体来说,为了攻击K个模型的集合,对数被融合为:
在这里插入图片描述

其中,lk(X;θk)是参数为θk的第k个模型的对数输出,wk是具有wk≥0和w1+w2+…+wk=1的集合权值。

实验

攻击单体模型,对角线上是白盒,其他是黑盒。
在这里插入图片描述

还把数据增强这种方法放在其他攻击方法(C&W)上测试:
在这里插入图片描述
攻击集成模型:ensemble是白盒,hold-out是黑盒
在这里插入图片描述

此外,本文验证了Transformation probability p,Total iteration number N,Step size α三个参数的选取对实验结果的影响。

### 回答1: 提升单目深度估计方法来改进海洋透视。 海洋透视是指由于海洋介质的光学特性,人眼在水下观察物体时出现的模糊和失真现象。为了改善海洋透视,可以利用单目深度估计方法。 单目深度估计是借助计算机视觉技术来估计图像中每个像素点与相机的距离。在传统的单目深度估计方法中,主要依赖于图像中的几何和纹理信息来推断深度。然而,在海洋环境中,由于光线的折射和散射,图像中的几何和纹理信息丧失较多,导致传统方法的准确性下降。 为了克服这个问题,可以通过改进单目深度估计方法来提高海洋透视的效果。一种方法是利用深度学习技术,通过训练神经网络来学习从输入图像中预测深度的映射关系。可以使用已标注的水下图像数据集进行监督学习,使网络能够学习到更准确的深度估计模型。另外,还可以对网络进行迁移学习,使用在陆地环境下预训练的模型,在海洋环境中进行微调,以适应海洋透视的特殊情况。 另一个改进单目深度估计方法的途径是改进特征提取和匹配算法。可以通过使用更好的特征描述子和特征匹配算法,提高单目深度估计的稳定性和准确性。例如,可以使用基于学习的描述子,如深度卷积神经网络提取图像特征,再通过优化的匹配算法实现更准确的深度估计。 总之,通过利用深度学习和改进特征提取与匹配算法,可以显著提高单目深度估计方法在海洋透视上的效果。这将有助于提高水下图像的质量和可视性,在海洋环境下进行相关应用和研究。 ### 回答2: 提升单目深度估计方法以改善水下透视。水下透视是指我们在水下看到的物体变得模糊和失真的现象。为了解决这个问题,研究人员一直在探索使用单目深度估计方法来改善水下透视。 单目深度估计是通过使用单个摄像机来估计图像中物体的距离和深度。在水下,由于水的折射效应,光线会发生折射,导致图像失真。因此,传统的单目深度估计方法往往无法准确估计水下的物体距离和深度。 为了解决这个问题,研究人员提出了一些改进的单目深度估计方法。这些方法包括使用水下场景中的先验知识和模型,从而更好地估计水下物体的深度。例如,可以通过水下传感器捕获的信息来构建水下场景模型,并在深度估计过程中结合使用。此外,还可以利用水下图像的颜色和纹理信息,通过神经网络和机器学习方法进行深度估计。 这些改进的单目深度估计方法的应用可以在水下摄影、水下导航和水下探测等领域中发挥重要作用。例如,在水下摄影中,利用改进的深度估计方法可以提高图像的清晰度和质量,使得拍摄的照片更加真实和可视化。在水下导航和探测中,使用改进的单目深度估计方法可以提供更准确的水下环境信息,从而帮助人们更好地识别、定位和探测水下物体。 总之,改进的单目深度估计方法可以有效地改善水下透视问题,并在水下领域的各个应用中发挥重要作用。随着技术的不断发展,相信这些方法将进一步提升水下图像和数据的质量和可用性。 ### 回答3: 提升海洋透视图像的质量可以通过单目深度估计方法来实现。海洋透视图像通常受到水下湍流、波浪和光线散射等因素的影响,导致图像质量下降。而单目深度估计方法可以通过分析图像中的视差信息来估计场景中的深度信息。 单目深度估计方法有多种实现方式,其中一种常用的方法是基于卷积神经网络(CNN)。该方法通过训练一个深度估计网络,从输入图像中直接预测每个像素的深度信息。训练过程使用带有深度标签的真实图像和对应的深度地图进行,可以通过最小化预测深度与真实深度之间的差异来优化网络参数。 通过使用单目深度估计方法,可以从原始的海洋透视图像中获取更准确和清晰的深度信息。这将有助于改善海洋透视图像的视觉效果和质量。准确的深度信息可以用于场景还原、物体分割和虚实混合等应用中。此外,通过深度估计,还可以对图像进行后续处理,如去除湍流和波浪的影响,进一步提高视觉效果。 总而言之,使用单目深度估计方法可以有效地改善海洋透视图像的质量。这一方法通过分析图像中的视差信息来预测深度信息,从而提供更准确和清晰的深度信息。这将有助于改善海洋透视图像的视觉效果和质量,并为进一步的图像处理提供基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值