【打卡第245道】【动态规划】【leetCode高频】:152. 乘积最大子数组

1、题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

子数组 是数组的连续子序列。

2、算法分析

求数组中子区间的最大乘积,对于乘法,我们需要注意,负数乘以负数,会变成正数,所以解这题的时候我们需要维护两个变量,当前的最大值,以及最小值,最小值可能为负数,但没准下一步乘以一个负数,当前的最大值就变成最小值,而最小值则变成最大值了。

maxDP[i + 1] = max(maxDP[i] * A[i + 1], A[i + 1],minDP[i] * A[i + 1])
minDP[i + 1] = min(minDP[i] * A[i + 1], A[i + 1],maxDP[i] * A[i + 1])
dp[i + 1] = max(dp[i], maxDP[i + 1])

3、代码实现

/*
    这个题有正数有负数,当正数*负数的时候,为负数
    
 */
class Solution {
    public int maxProduct(int[] nums) {
        // 判空数组
        if(nums == null || nums.length == 0){
            return 0;
        }
        // 定义结果集
        int result = nums[0];
        // 定义两个dp数组是以i为结尾的数组元素乘积的最大值和最小值
        int[] maxDP = new int[nums.length];
        int[] minDP = new int[nums.length];
        
        // 初始化
        maxDP[0] = nums[0];
        minDP[0] = nums[0];

        // 遍历
        for(int i = 1;i < nums.length;i++){
            // 最大值可能是 元素i本身,也可能是最大积与nums[i]相乘,最小积元素与nums[i]相乘
            maxDP[i] = Math.max(nums[i],Math.max(maxDP[i - 1] * nums[i],minDP[i - 1]* nums[i]));
            minDP[i] = Math.min(nums[i],Math.min(maxDP[i - 1] * nums[i],minDP[i - 1]* nums[i]));
            result = Math.max(result,maxDP[i]);
        }
        return result;

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值