SVM优化问题中的 kkt条件推导


SVM


提示:以下是本篇文章正文内容,下面案例可供参考

一、SVM问题

min ⁡ 1 2 ∥ w ∥ 2 s . t .     y i ( w T x i + b ≥ 1 ) \begin{array}{l} \min \frac{1}{2}\|w\|^2\\ s.t.~~~ y_i(w^Tx_i+b\geq 1) \end{array} min21w2s.t.   yi(wTxi+b1)

二、Lagrange function

**step 1.**约束罚上去

L : ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 n α i ( y i ( w T x i + b ) − 1 ) ) L:(w,b,\alpha)=\frac{1}{2}\|w\|^2-\sum^{n}_{i=1}\alpha_i(y_i(w^Tx_i+b)-1)) L:(w,b,α)=21w2i=1nαi(yi(wTxi+b)1))

step 2. 分别对w,b求偏导得0
L w ( w , b , α ) = w − ∑ α i y i x i = 0 ; L b ( w , b , α ) = − ∑ α i y i = 0 ; \begin{array}{l} L_w(w,b,\alpha)=w-\sum\alpha_iy_ix_i=0;\\ L_b(w,b,\alpha)=-\sum\alpha_iy_i=0; \end{array} Lw(w,b,α)=wαiyixi=0;Lb(w,b,α)=αiyi=0;
由上可得
w i = ∑ α i y i x i ; ∑ α i y i = 0 ; \begin{array}{l} w_i=\sum\alpha_iy_ix_i;\\ \sum\alpha_iy_i=0; \end{array} wi=αiyixi;αiyi=0;

setp 3 将上面两式代入 L ( w , b , α ) L(w,b,\alpha) L(w,b,α)
L ( w , b , α ) = − 1 2 ∑ i = 1 n ∑ j = 1 n α i α j y i y j ( x i T x j ) + ∑ i = 1 n α i ; L(w,b,\alpha)=-\frac{1}{2}\sum^n_{i=1}\sum^n_{j=1}\alpha_i\alpha_jy_iy_j(x_i^Tx_j)+\sum^n_{i=1}\alpha_i; L(w,b,α)=21i=1nj=1nαiαjyiyj(xiTxj)+i=1nαi;

三. 求解如下函数

step 1.
min ⁡ α    1 2 ∑ i = 1 n ∑ j = 1 n α i α j y i y j ( x i T x j ) − ∑ i = 1 n α i ; s . t .    ∑ i = 1 n α i y i = 0 ,           α ≥ 0 ,                 i = 1 , . . . . , n \begin{array}{l} \min_\alpha~~ \frac{1}{2}\sum^n_{i=1}\sum^n_{j=1}\alpha_i\alpha_jy_iy_j(x_i^Tx_j)-\sum^n_{i=1}\alpha_i;\\ s.t. ~~\sum^n_{i=1}\alpha_iy_i=0,\\ ~~~~~~~~~\alpha\geq0, ~~~~~~~~~~~~~~~i=1,....,n \end{array} minα  21i=1nj=1nαiαjyiyj(xiTxj)i=1nαi;s.t.  i=1nαiyi=0,         α0,               i=1,....,n
可简化表达如下

min ⁡ α    1 2 α T Q α − α ; s . t .    y T α = 0 ,           0 ≤ α ≤ C ,                 i = 1 , . . . . , n \begin{array}{l} \min_\alpha~~ \frac{1}{2}\alpha^TQ\alpha-\alpha;\\ s.t. ~~y^T\alpha=0,\\ ~~~~~~~~~0\leq\alpha\leq C, ~~~~~~~~~~~~~~~i=1,....,n \end{array} minα  21αTQαα;s.t.  yTα=0,         0αC,               i=1,....,n
where (线性) Q = y i y j ( x i T x j ) Q=y_iy_j(x_i^Tx_j) Q=yiyj(xiTxj)
(非线性引入核函数) Q = y i y j k e r n e r l R B F < x i , x j > Q=y_iy_jkernerl_{RBF}<x_i,x_j> Q=yiyjkernerlRBF<xi,xj>

step 2. 将约束罚上去得
h ( α ) = 1 2 α T Q α − α − μ α y − δ α + β ( α − C ) h(\alpha)=\frac{1}{2}\alpha^TQ\alpha-\alpha-\mu\alpha y-\delta\alpha+\beta(\alpha-C) h(α)=21αTQααμαyδα+β(αC)
按分量看
kkt条件

  1. h对 α \alpha α求导得0
    h α = Q α − 1 − μ i y i − δ i + β i = 0 h_{\alpha}=Q\alpha -1-\mu_i y_i-\delta_i+\beta_i=0 hα=Qα1μiyiδi+βi=0;
    g ( α , μ ) = Q α − 1 − μ i y i g(\alpha,\mu)=Q\alpha -1-\mu_i y_i g(α,μ)=Qα1μiyi
    简化表达 h α = g ( α , μ ) − δ i + β i = 0 h_{\alpha}=g(\alpha,\mu)-\delta_i+\beta_i=0 hα=g(α,μ)δi+βi=0;
  2. 乘子大于等于0
    δ i ≥ 0 \delta_i\geq0 δi0;
    β i ≥ 0 \beta_i\geq0 βi0;
  3. 互补条件(乘子*约束=0,即三种情况1.乘子等于0,2.约束等于0,3.乘子约束同时等于0)
    δ i α i = 0 \delta_i\alpha_i=0 δiαi=0;
    β i ( α i − C ) = 0 \beta_i(\alpha_i-C)=0 βi(αiC)=0;

case 1. α = 0 \alpha=0 α=0
δ i α i = 0 \delta_i\alpha_i=0 δiαi=0 α = 0 \alpha=0 α=0 , 可得 δ i ≥ 0 \delta_i\geq0 δi0.
β i ( α i − C ) = 0 \beta_i(\alpha_i-C)=0 βi(αiC)=0 α = 0 \alpha=0 α=0, 可得 β i ( − C ) = 0 \beta_i(-C)=0 βi(C)=0,又因为C>0, 可得 β i = 0 \beta_i=0 βi=0.
h α = g ( α , μ ) − δ i + β i = 0 h_{\alpha}=g(\alpha,\mu)-\delta_i+\beta_i=0 hα=g(α,μ)δi+βi=0
h α = g ( α , μ ) − δ i + 0 = 0 h_{\alpha}=g(\alpha,\mu)-\delta_i+0=0 hα=g(α,μ)δi+0=0
g ( α , μ ) = δ i ≥ 0 g(\alpha,\mu)=\delta_i\geq0 g(α,μ)=δi0
即当 α = 0 \alpha=0 α=0 时, g ( α , μ ) ≥ 0 g(\alpha,\mu)\geq0 g(α,μ)0.

case 2. 0 < α < C 0<\alpha< C 0<α<C
δ i α i = 0 \delta_i\alpha_i=0 δiαi=0 α ≠ 0 \alpha\neq0 α=0, 可得 δ i = 0 \delta_i=0 δi=0.
β i ( α i − C ) = 0 \beta_i(\alpha_i-C)=0 βi(αiC)=0 0 < α < C 0<\alpha< C 0<α<C , 可得 ( α i − C ) ≠ 0 (\alpha_i-C)\neq0 (αiC)=0,可得 β i = 0 \beta_i=0 βi=0.
h α = g ( α , μ ) − δ i + β i = 0 h_{\alpha}=g(\alpha,\mu)-\delta_i+\beta_i=0 hα=g(α,μ)δi+βi=0
h α = g ( α , μ ) − 0 + 0 = 0 h_{\alpha}=g(\alpha,\mu)-0+0=0 hα=g(α,μ)0+0=0
h α = g ( α , μ ) = 0 h_{\alpha}=g(\alpha,\mu)=0 hα=g(α,μ)=0
即当 0 < α < C 0<\alpha< C 0<α<C 时, g ( α , μ ) = 0 g(\alpha,\mu)=0 g(α,μ)=0.

case 3. α = C \alpha=C α=C
δ i α i = 0 \delta_i\alpha_i=0 δiαi=0 α = C \alpha=C α=C, 可得 δ i = 0 \delta_i=0 δi=0.
β i ( α i − C ) = 0 \beta_i(\alpha_i-C)=0 βi(αiC)=0 α = 0 \alpha=0 α=0, 可得 ( α i − C ) = 0 (\alpha_i-C)=0 (αiC)=0, 可得 β i ≥ 0 \beta_i\geq0 βi0.
h α = g ( α , μ ) − δ i + β i = 0 h_{\alpha}=g(\alpha,\mu)-\delta_i+\beta_i=0 hα=g(α,μ)δi+βi=0
h α = g ( α , μ ) − 0 + β i = 0 h_{\alpha}=g(\alpha,\mu)-0+\beta_i=0 hα=g(α,μ)0+βi=0
g ( α , μ ) = − β i ≤ 0 g(\alpha,\mu)=-\beta_i\leq0 g(α,μ)=βi0
即当 α = C \alpha=C α=C 时, g ( α , μ ) ≤ 0 g(\alpha,\mu)\leq0 g(α,μ)0.

四. L ( w , b , α ) L(w,b,\alpha) L(w,b,α)的KKT 条件如下:

α = 0 ,             g ( α , μ ) ≥ 0 0 < α < C ,    g ( α , μ ) = 0 α = C ,           g ( α , μ ) ≤ 0 \begin{array}{l} \alpha=0 ,~~~~~~~~~~~ g(\alpha,\mu)\geq0\\ 0<\alpha< C, ~~ g(\alpha,\mu)=0\\ \alpha=C, ~~~~~~~~~ g(\alpha,\mu)\leq0\\ \end{array} α=0,           g(α,μ)00<α<C,  g(α,μ)=0α=C,         g(α,μ)0

上文中的 g ( α , μ ) g(\alpha,\mu) g(α,μ)
= Q α − 1 − μ i y i = y i y j ( x i T x j ) α − 1 − y i μ i = y i ( y j ( x i T x j ) α − μ i ) − 1 \begin{array}{l}=Q\alpha -1-\mu_i y_i\\=y_iy_j(x_i^Tx_j)\alpha -1- y_i\mu_i\\ =y_i(y_j(x_i^Tx_j)\alpha-\mu_i)-1 \end{array} =Qα1μiyi=yiyj(xiTxj)α1yiμi=yi(yj(xiTxj)αμi)1还有的论文中令 f ( x i ) = y j ( x i T x j ) α − μ f(x_i)=y_j(x_i^Tx_j)\alpha-\mu f(xi)=yj(xiTxj)αμ,即 g ( α , μ ) = y i f ( x i ) − 1 g(\alpha,\mu)=y_if(x_i)-1 g(α,μ)=yif(xi)1
则有

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值