Tarjan

没有写的太细,就是当记录模板了。因为更具体的细节我也不是太明白,写出来误导了别人就不好了

Tarjan算法可以缩点,求强连通分量(有向图范围),求割点,桥,双联通分量(无向图范围)。今天记录一下Tarjan算法求无向图的割点。

Tarjan算法,首先要有两个必备数组 dfn[] 和 low[] 

dfn[i]就是时间戳,即在什么时刻搜索到了点i;low[i]则是i点能回溯到的dfn最小的祖先(即i点所能回溯到的最早的祖先)。

先找一个点作为根节点

根节点是不是割点的判断,计算其子树数量,如果有2棵即以上的子树,就是割点。因为如果去掉这个点,这两棵子树就不能互相到达。

非根节点的判断

x存在儿子节点y,使得dfn[x]<=low[y]则x一定是割点。

因为只要x的子节点不能回溯到x的上面,就是没有返祖边超过x点,那么割掉x就能造成不连通了

void Tarjan(int u,int fa){
	low[u] = dfn[u] = ++tot;
	int child = 0;
	for(int i = 0; i < G[u].size(); i++){
		int v = G[u][i];
		if(!dfn[v]){
			Tarjan(v,u);
			low[u] = min(low[u],low[v]);
			if(low[v] >= dfn[u] && u!=fa)
				iscut[u] = 1;
			if(u == fa)
				child++;
		}
		low[u] = min(low[u],dfn[v]);
	}
	if(child>=2 && u==fa)
		iscut[u] = 1;
}

找到的另一种写法

int dfs_clock;int pre[MAX];
int dfs(int u,int fa)
{
    int lowu = pre[u] = ++dfs_clock;
    int child = 0;
    for(int i=0;i<G[u].size();i++)
    {
        int v = G[u][i];
        if(!pre[v])     //没有访问的v
        {
            child++;    //孩子节点的数目
            int lowv = dfs(v,u);
            lowu = min(lowu,lowv);    //用后代更新lowu
            if(lowv >= pre[u]) iscut[u] = 1;
            //if(lowv > pre[u]) cout<<"桥:"<<u<<"-"<<v<<endl;
        }
        else if(pre[v] < pre[u] && v != fa)  //用反向边更新lowu
        {
            lowu = min(lowu,pre[v]);
        }
    }
    if(fa < 0 && child == 1) iscut[u] = 0;    //对于根节点的处理
    low[u] = lowu;
    return lowu;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值