运筹学复习

@TOC运筹学复习一
线性规划 复习要点
1.基本概念
2.单纯形法
基本概念

图解法
和高中的线性规划是一样的,画出坐标图,然后画可行域,确定好区域,求出交点的坐标位置,代入目标函数进行求解即可
单纯性法
需要找出可行基和换入换出变量,进行迭代

例题1.1
在这里插入图片描述
由此可知我们的目标函数为 MaxZ=4x1+3x2

限制条件S.T
{
2x1+2x2<=1600
5x1+2.5x2<=2500
x1<=400
x1,x2>=0
}
线性规划问题解的特点

  1. 若线性规划问题存在唯一的最优解,那么它必定在定点上(基本可行解)
  2. 若线性规划问题存在多个最优解,那么必有几个相邻的顶点是最优解,其它最优解可以
    表示成这几个顶点的凸组合。
    3.若一个顶点的目标函数值比它的相邻定点的目标函数值要好的话,它就是最优解

单纯形解法步骤

  1. 建立基本可行解
  2. 计算变量的检验数
  3. 判断是否最优
  4. 若不是最优解,换基
  5. 计算新的基本可行解
  6. 迭代换算直到求得最优解或可判断无最优解为止

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值